ORIGINAL ARTICLE

PREVALENCE AND FACTORS ASSOCIATED WITH CHRONIC KIDNEY DISEASE IN DIABETIC PATIENTS

Ualison Oliveira Pontes¹; Gina Torres Rego Monteiro²; Cledir de Araújo Amaral³ Maurício Teixeira Leite de Vasconcellos⁴; Thatiana Lameira Maciel Amaral⁵

Highlights: (1). People with diabetes mellitus (DM) can develop CKD, with a 40% identification rate. (2). CKD has been associated with longer periods of diagnosis and treatment in diabetic individuals. (3). Actions for detecting and preventing CKD in diabetics are necessary within the SUS.

PRE-PROOF

(as accepted)

Esta é uma versão preliminar e não editada de um manuscrito que foi aceito para publicação na Revista Contexto & Saúde. Como um serviço aos nossos leitores, estamos disponibilizando esta versão inicial do manuscrito, conforme aceita. O artigo ainda passará por revisão, formatação e aprovação pelos autores antes de ser publicado em sua forma final.

http://dx.doi.org/10.21527/2176-7114.2024.48.14221

Como citar:

Pontes UO, Monteiro GTR, Amaral C de A, de Vasconcellos MTL, Amaral TLM. Prevalência e fatores associados à doença renal crônica em pacientes diabéticos. Rev. Contexto & Saúde, 2024;24(48): e14221

https://orcid.org/0000-0002-5462-9811

https://orcid.org/0000-0002-9900-1825

https://orcid.org/0000-0002-7221-5364

https://orcid.org/0000-0003-1658-2589

https://orcid.org/0000-0002-9197-5633

¹ Federal University of Acre (UFAC). Rio Branco/AC, Brazil.

² Oswaldo Cruz Foundation (FIOCRUZ). Rio de Janeiro/RJ, Brazil.

³ Federal Institute of Acre. Rio Branco/AC, Brazil.

⁴ Brazilian Institute of Geography and Statistics Foundation. Rio de Janeiro/RJ, Brazil.

⁵ Federal Institute of Acre (UFAC). Rio Branco/AC, Brazil.

ABSTRACT

Introduction: The incidence of chronic kidney disease (CKD) has been increasing worldwide as a result of demographic and epidemiological transition processes, life expectancy, and the lack of control of chronic diseases, such as diabetes mellitus (DM). Thus, the present study aimed to evaluate the prevalence and factors associated with CKD in diabetic patients. **Method:** This was a cross-sectional study with diabetic patients enrolled in the Family Health Strategy (FHS), in the urban area of Rio Branco, state of Acre, in 2019. CKD was defined by GFR < 60 mL/1.72m², estimated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, or the presence of albuminuria > 29 mg/g. Measures of association were estimated by logistic regression, with a confidence level of 95%. **Results:** The prevalence of CKD was 40.0% in diabetic patients. A statistically significant association was found between CKD and treatment time longer than 10 years (1.74; 95%CI: 1.01; 3.02) and DM diagnosis (1.87; 95%CI: 1.05; 3.33) after adjustment. **Conclusion:** CKD has a high prevalence in diabetic patients, highlighting the need for public health measures for early detection and prevention of its progression.

Keywords: Chronic kidney disease. Diabetes mellitus. Associated factors. Prevalence.

INTRODUCTION

The prevalence of diabetes mellitus (DM) has increased considerably throughout the world due to increased life expectancy, the adoption of an unhealthy lifestyle, a sedentary lifestyle, the growing prevalence of obesity, and the urbanization process¹. Global estimates indicate that 382 million people lived with DM (8.3%), and this number could reach 592 million in 2035².

Uncontrolled blood glucose causes the development of serious and irreversible micro and macrovascular complications, including neuropathy, nephropathy, retinopathy, coronary disease, stroke, and peripheral vascular disease¹. A meta-analysis study with data from 82 studies around the world showed a strong association between chronic kidney disease (CKD) and DM³; this relationship is well established in the literature⁴.

CKD is considered one of the greatest global public health challenges, with 1.2 million deaths related to it worldwide and around 35 thousand in Brazil, with a mortality

rate of 16.1/100,000 inhabitants, in 2017⁵. Among the reasons for death is the lack of access to renal replacement therapy⁶.

The prevalence of CKD ranged from 45.1%, according to a North American cross-sectional study conducted with 2,915 diabetic patients using the MDRD equation⁷, to 24.4% in Thailand, in a similar study with 1,096 diabetic patients using the CKD-Epi equation⁸. In Brazil, a survey of 7,457 patients aged ≥18 years detected a prevalence of 17.0% among diabetic patients according to the CKD-Epi equation⁹. According to a study involving 1,016 elderly people living in rural and urban areas of the municipality of Rio Branco (AC), the general prevalence of CKD was 21.4% and reached 41.5% in diabetic patients¹⁰.

Research on CKD in diabetic patients should be encouraged to identify risk factors related to the onset of complications and point out ways to improve the prognosis of these patients. Early detection facilitates treatment and offers opportunities for therapeutic interventions to prevent or delay the onset of complications and improve results¹¹. Given the above, intending to contribute to the development of actions and new health strategies aimed at early diagnosis of CKD and monitoring of DM patients, this study aimed to analyze the prevalence and factors associated with chronic kidney disease in diabetic patients in Rio Branco, state of Acre.

MATERIAL AND METHODS

This was a cross-sectional study with individuals enrolled in the Family Health Strategy (FSH) diagnosed with DM in the urban area of Rio Branco (state of Acre) in 2019. The data are part of the matrix project entitled "Study of chronic diseases from the perspective of quality in health (Edoc-Quali)", approved by the Research Ethics Committee of the Federal University of Acre under number 2.574.391. The present study complied with the provisions of CNS Resolution 466/2012, which deals with ethics in research involving human beings, and all participants signed the Informed Consent (IC).

The reference population for the study consisted of individuals aged 18 or over with type 2 DM, living in the urban area of Rio Branco, state of Acre, and enrolled in the FHS. Participants with cognitive disabilities that made it impossible to communicate or understand the questions in the interview, pregnant women, and patients with type 1 diabetes were excluded.

Rio Branco relies on 68 Family Health Teams (FHTs) in the urban area, distributed throughout the two districts of the capital, allocated in 43 Primary Health Care Units. To calculate the sample size of users for this study, we considered a prevalence of 50.0% of changes in renal function, a margin of error of 3.5%, and a sampling design effect (SDE) estimate of 1.5, with a minimum sample of 308 diabetic patients. An additional 10.0% was added to cover any losses and refusals. The sample consisted of 324 diabetic patients. Due to the lack of information on albuminuria and creatinine, the final sample size in this study was 311 diabetic patients, which represents 2,372 individuals in the expanded sample.

All data collection procedures were carried out by trained personnel and supervised by the research coordination team. Data were collected by applying a general electronic, structured questionnaire in the health units of the selected FHTs. The sampling design was selected in two stages: unit and individual. In the first stage, 30 FHTs were drawn, and in the second, a draw of individuals with type 2 diabetes mellitus. Family registration forms were the source of information.

The individual form, structured with sociodemographic variables, health assessment, lifestyle habits, and the care process for people with DM. Physical and laboratory assessments were also carried out.

Anthropometric data included the measurement of weight, height and waist, hip, arm, and calf circumference, following the protocols recommended by the American College of Sports Medicine (ACSM) – all in duplicate, considering the measurement averages.

Weight was measured using a G-Tech[®] Bal Gl 200 digital scale accurate to 50 grams on a flat surface. Participants were instructed and were wearing light clothing with empty pockets and invited to step barefoot onto the center of the scale with their body upright, arms at their sides, and looking straight ahead.

Height was determined using a Sanny® portable stadiometer accurate to millimeters and the base on a flat surface. The participants, without using objects on their heads, remained placed with their backs to the device, with legs and feet parallel, weight distributed on both, arms sideways, and palms facing the body. After aligning the back of the head, back, buttocks, legs, and heels and the eyes facing forward using the Frankfurt plane for head positioning, the individual was asked to inhale deeply and hold their breath

during the measurement, carried out by moving the mobile part of the stadiometer to the highest point of the head, compressing the hair enough to measure height.

Body mass index (BMI) resulted from the calculation of the ratio of weight (kg) to height (in meters squared: m^2). For analysis, participants were classified as underweight (< 18.5 kg/m^2), normal weight (from $18.5 \text{ to } 24.9 \text{ kg/m}^2$), overweight (from $25 \text{ to } 29.9 \text{ kg/m}^2$), and obese ($\geq 30 \text{ kg/m}^2$).

Blood pressure (BP) was measured using a Beurer[®] automatic digital blood pressure monitor with an arm cuff, following the protocol recommended by the Brazilian Society of Cardiology. The final value was calculated by the arithmetic mean of the second and third measurements.

For the urine sample, approximately 50mL was obtained from the midstream of the first morning urine, collected in a duly identified sterile bottle, stored at a controlled temperature, and analyzed in a specialized laboratory. Samples were processed using physical-chemical and microscopic analysis of the sediment. A part was centrifuged, and the supernatant was taken for biochemical analysis of albuminuria levels using the method for the quantitative determination of albumin in human urine.

The peripheral blood sample was obtained by venipuncture in the antecubital fossa, with prior antisepsis. Biochemical analysis was carried out for triglycerides, total cholesterol and fractions (HDL – high-density lipoprotein and LDL – low-density lipoprotein), creatinine, and glycated hemoglobin were performed. After the results of the laboratory tests were made available and prior evaluation by the team, the tests were returned to the patients. In cases of altered results, the date for consultation with a health professional previously scheduled by the research team at the patient's reference health unit was indicated.

The dependent variable of the study was defined as chronic kidney disease identified by GFR $< 60 \text{ mL/min/1.73m}^2$ and/or with the presence of albuminuria > 29 mg/g, using the CKD-Epi equation.

The independent variables selected were age group (up to 39 years, 40 to 59 years, and \geq 60 years), sex (male and female), skin color (white and non-white), marital status (with a partner and without a partner), education (high school and over, elementary school, illiterate), smoking (smoker and non-smoker), alcohol consumption (yes and no).

The practice of physical activity was assessed using the IPAQ questionnaire – International Physical Activity Questionnaire Short Version. Individuals who performed moderate-intensity physical activity for a minimum period of 30 minutes on five weekdays or vigorous-intensity aerobic physical activity for at least 20 minutes on three days of the week were classified as non-sedentary. Those who were considered sedentary were all those who did not meet this criterion.

Therapeutic adherence was analyzed using an instrument to assess attitudes toward taking medication (IAAFTR) composed of 10 structured questions with affirmative or negative answers. The proposed cutoff score is 7, with scores less than or equal to 7 referring to a negative attitude and scores higher than 7 referring to a positive attitude.

Adherence to treatment/knowledge about the disease was analyzed with the Batalla test composed of three questions to measure adherence based on the user's knowledge about their disease: Is DM and/or SAH a lifelong disease? Can DM and/or SAH be controlled with diet and/or medication? Name two or more organs affected by diabetes and/or hypertension.

Another variable assessed was eating habits (adequate nutrition or not) based on individuals' responses to the food frequency questionnaire. Individuals who consumed at least three times a week foods considered unsuitable for hypertensive and diabetic patients, such as pasta, chocolates, and butter, among others, were considered to have an improper diet. Also included were hours of sleep (11 hours or more, 6 to 10 hours, and 0 to 5 hours), comorbidities (yes or no), time since diagnosis of the disease (< 5 years, 6 to 10 years, and > 11 years), disease treatment time (< 5 years, 6 to 10 years, and > 11 years), complications (yes or no).

The laboratory variables analyzed were glycated hemoglobin to define diabetes control, yes for <7.0% or no for higher than or equal to 7.0%; total cholesterol (desirable < 190 mg/dL or high); HDL-cholesterol (desirable > 40 mg/dL or low); LDL-cholesterol (optimal < 100 mg/dL, desirable < 130 mg/dL, borderline > 130 mg/dL to 159 mg/dL and high/very high > 160 mg/dL); triglycerides (desirable < 150 mg/dL or high).

Body mass index (BMI) was classified as underweight (< 18.5 kg/m^2); normal weight (from $18.5 \text{ to } 24.9 \text{ kg/m}^2$); overweight (from $25 \text{ to } 29.9 \text{ kg/m}^2$); and obese ($\geq 30 \text{ kg/m}^2$) (WHO, 2000). Independent variables were also considered: BP control,

recommended by the Brazilian Society of Cardiology, diastolic blood pressure (DBP) < 90 mmHg, systolic blood pressure (SBP) <140 mmHg, current medications, participation in hypertensive and diabetic patient groups in the last 12 months (yes or no).

The accessibility and quality of the service were assessed by applying the Primary Care Assessment Tool (PCATool). For accessibility, the cutoff score is 7, with scores < 7 indicating no accessibility to services and > 7 with accessibility. To evaluate the quality of the service, scores \ge 6.6 defined high or satisfactory quality, and values <6.6, considered poor or unsatisfactory, were used.

Data were analyzed in a descriptive and exploratory way to evaluate the distribution and characterize the studied population. Qualitative variables were described by absolute numbers and proportions. To test the differences between categorical variables, Pearson's chi-square test was adopted.

Bivariate analysis was carried out to explore the association between different variables and the outcome of chronic kidney disease. Regression models estimated the magnitude of association between the dependent variable and independent variables according to the proposed objectives. In the multiple analysis, those variables with a p-value less than 0.20 in the crude analysis were selected for inclusion, and the magnitude of the variables adjusted for age was evaluated. A significance level of $\alpha = 0.05$ was considered. Data analysis used the Complex samples routines of the Statistical Package for the Social Sciences (SPSS), version 20.0, for Windows.

RESULTS

The prevalence of CKD in diabetic patients served by FHTs was 40.0%, using the CKD-EPI equation. According to the GFR $< 60 \text{ mL/min/1.73 m}^2$, it was found in 14.0%, with 13.1% of individuals in stage 3, 0.6% in stage 4, and 0.5% in stage 5. Considering the prognosis of mild, moderate, and severe risk, the prevalence was 27.9%, 7.0%, and 5.1%, respectively. Albuminuria $\ge 30 \text{ mg/g}$ was observed in 32.5% of diabetic patients (Table 1).

Table 1. Prevalence by prognostic risk categories for CKD evolution according to GFR (CKD-EPI equation) and albuminuria in diabetic patients in Rio Branco, state of Acre, 2019.

categories/	700 - 4	L-14		Albuminuria (mg/g)									
GFR (mL/min/m²)	101	tal*	A1 (< 30)			A2 (30 299)	0-	A3 (≥ 300)	(GFR* and/or albuminuri a)				
_	N	%	N	%	N	%	N	%	N	%			
1 ≥90	1,287	54.4	879	38.4	339	14.8	39	1.7	378	16.5			
2 60-89	741	31.2	491	21.4	187	8.2	31	1.3	218	9.5			
3a 45-59	207	8.7	111	4.9	45	2.0	33	1.4	189	8.3			
3b 30-44	110	4.6	45	2.0	44	1.9	21	0.9	110	4.8			
4 15-29	13	0.5	06	0.3	07	0.3	00	00	13	0.6			
5 < 15 or dialysis	14	0.6	07	0.3	00	00	00	00	0 7	0.3			
Total	2,372	100.0	1.539	67.3	622	27.2	124	5.3	915	40.0			

The presence of CKD was higher among men, also in subjects aged 60 years or over, white skin color, those with less education, those without a partner, those who do not drink alcohol, smokers, and those who are sedentary (Table 2).

Table 2. Prevalence of CKD in diabetic patients according to sociodemographic characteristics and lifestyle habits in Rio Branco, state of Acre, 2019.

	_				C	KD	ORcrude	p-		
Variables	T	Total		Yes			No		(95%CI)	value
				n N %		n	n N %			
Gender										0,309
Masculine	117	898	49	387	43.1	68	511	56.9	1	
Feminine	199	1,526	75	576	37.7	124	950	62.3	0.80 (0.51;1.26)	
Age group										
Up to 39 years	18	138	4	31	22.4	14	107	77.6	1	
old										
40 to 59 years	121	905	36	262	28.9	85	643	71.1	1.41 (0.40;4.96)	0.036
old										
≥ 60 years	177	1,381	84	670	48.5	93	711	51.5	3.28 (0.83; 2.90)	
Skin color										0.408
White	67	523	29	235	45.0	38	288	55.0	1	•
Non-white	249	1,901	95	728	38.3	154	1,173	61.7	0.76	
									(0.38;1.50)	

Education										0.148
High school and	69	535	20	155	29.0	49	380	71.0	1	
over										
Elementary	195	1,472	82	629	42.7	113	843	57.3	1.82	
School									(0.87;3.81)	
Illiterate	52	417	22	179	43.0	30	238	57.0	1.84	
									(0.94;3.61)	
Marital status*										0.768
With a partner	61	460	24	175	38.1	37	285	61.9	1	
Without a	254	1,957	100	788	40.3	154	1,169	59.7	1.10	
partner									(0.57; 2.12)	
Alcohol consump	otion*									0.886
No	296	2,271	116	902	39.7	180	1,369	60.3	1	
Yes	19	146	08	61	41.9	11	85	58.1	1.09	
									(0.30;4.06)	
Smoking*										0.042
Non-smoker	25	185	5	40	21.6	20	145	78.4	1	
Smoker	290	2,232	119	923	41.4	171	1,309	58.6	0.39	
									(0.15;0.99)	
Physical activity*										0.039
Non-sedentary	126	941	40	307	32.7	86	634	67.3	1	
Sedentary	189	1,486	84	665	44.4	105	821	55.6	1.65	
-									(1.03; 2.64)	

N expanded based on the weights and the sampling design; % = proportion from N exp.; p-value = Pearson's Chi-square test. * Differences from the total are due to a lack of information in the variable.

According to clinical characteristics, the prevalence of CKD in diabetic patients indicated higher prevalence in individuals with comorbidities, hours of sleep between 6 and 10 hours, time since diagnosis and treatment of DM of 11 years or more, non-adherence to treatment/knowledge about the disease, with complications, no use of nephrotoxic medications, and a positive attitude toward taking medication. Furthermore, the prevalence was higher in patients with low HDL, borderline/high LDL, and high triglycerides. Taking DM control into account, in individuals who did not have control of the disease, the prevalence was 40.9%. Regarding the characteristics of the service, the prevalence was higher in subjects without accessibility and who had not participated in DM groups in the last 12 months but without significant differences comparing those with and without CKD (Table 3).

Table 3. Prevalence of CKD in diabetic patients according to clinical characteristics and referring to the service in Rio Branco, state of Acre, 2019.

		Total				CKD			ORcrude	p-value
Variables				Yes			No		(95% CI)	ſ
	n	N	n	N	%	n	N	%		
GI I I		=	F I	_	F		<u> </u>	-		0.211
Sleep hours*	1.7	0.6	0.5	40	24.5	11	1.0	6 F F		0.314
11 or more	17	86	06	40	34.5	11	46	65.5	1	
6 to 10	251	1,951	103	807	41.4	148	1,144	72.9	1.34 (0.45; 3.56)	
0 to 5	42	312	12	93	29.9	30	219	70.1	0.81 (0.22; 2.99)	
Comorbidities										0.853
No	16	121	07	45	36.9	09	76	63.1	1	
Yes	300	2,903	117	918	39.9	183	1,985	60.1	1.13 (0.28; 4.56)	
DM diagnosis	time	(years)*								0.126
< 5	137	1,055	48	365	34.6	89	690	65.4	1	
6 to 10	99	719	36	279	38.8	60	440	61.2	1.20 (0.63; 2.27)	
11 or more	78	684	38	304	49.7	40	380	50.3	1.87 (1.05; 3.31)	
DM treatment	time	(years)*								0.062
< 5	142	1,093	49	374	34.2	93	719	65.8	1	
6 to 10	93	707	35	275	38.9	58	432	61.1	1.22 (0.68; 2.21)	
11 or more	74	573	37	294	51.2	37	279	48.8	2.02 (1.12; 3.66)	
Adherence to t	reatn	nent/know	ledge	about	DM*					0.413
Yes	152	1,125	57	420	373	95	705	62.7	1	
No	160	1,270	65	527	41.5	95	743	58.5	1.19 (0.77; 1.85)	
Complication		,							((((((((((((((((((((
S										
No	191	1,458	72	566	38.9	119	892	61.1	1	
Yes	125	966	52	397	41.1	73	569	58.9	1.10 (0.64; 1.88)	0.723
Nephrotoxic di	rugs		1							
No	240	1,832	96	750	41.0	144	1,082	59.0	1	
Yes	76	591	28	212	35.9	48	379	64.1	0.81 (0.39; 1.69)	0.549
Adequate nutr			1						(0.05, 1.05)	0.0.7
Yes	16	126	05	38	30.5	11	88	69.5	1	
No	299	2,292	119	925	40.3	180	1,367	59.7	1.54 (0.53; 4.50)	0.401
Attitudes towa					10.5	100	1,507	33.1	1.01 (0.00)	0.101
(IAAFTR)*	1 45 00	······································	104010							
Positive	212	1,620	86	658	40.6	126	962	59.2	1	
Negative	94	730	35	279	38.2	59	451	61.8	0.90 (0.54; 1.50)	0.678
Total cholester		730	33	217	30.2		131	01.0	0.50 (0.51, 1.50)	0.070
Desirable	148	1,142	60	454	40.1	88	688	59.9	1	
High	164	1,142	62	493	39.1	102	767	60.1	0.96 (0.56; 1.65)	0.867
HDL cholester		1,200	02	T 23	37.1	102	707	00.1	0.70 (0.30, 1.03)	0.867
Desirable Desirable	198	1,532	72	552	36.2	126	971	63.8	1	0.007
Low	115	878	51	404	46.1	64	474	53.8	1.50 (0.97; 2.34)	
LDL cholester		0/0	<i>J</i> 1	404	40.1	04	7/4	22.0	1.50 (0.57, 2.54)	0.410
Excellent	108	845	43	337	39.9	65	508	60.1	1	0.410
Desirable	90	664	31	229	34.4	59	435	65.9	0.79 (0.51; 1.23)	
			-							
Borderline	64	509	27	223	43.8	37	286	56.2	1.18 (0.73; 1.88)	
High/very high	34	273	11	85	31.0	25	188	69.0	0.68 (0.24; 1.88)	
Triglyceride*										0.085
Desirable	134	1,050	46	361	34.4	88	689	65.6	1	

High	179	692	77	595	44.0	102	756	56.0	1.50 (0.94; 2.41)	
DM control*										0.205
Yes	08	62	02	16	26.4	06	46	73.6	1	
No	290	2,216	116	906	40.9	174	1,310	59.1	1.53 (0.77; 3.05)	
BMI (Kg/m ²)*	•									0.388
< 24.9	01	08	01	08	100	00	00	00	1	
25 to 29.9	05	37	02	14	38.5	03	23	61.5	1.09 (0.52; 2.28)	
30 and over	290	2,229	111	862	38.7	179	1,367	61.3	0.89 (0.53; 1.48)	
Access to the	service	<u> </u>								0.977
Yes	165	1,282	67	508	39.7	98	774	60.3	1	
No	151	1,142	57	455	39.8	94	687	60.2	0.99 (0.63; 1.58)	
Service qualit	y *									0.995
Yes	82	642	33	254	39.5	49	388	60.5	1	
No	231	1,762	89	696	39.5	142	1,066	60.5	0.99 (0.49; 2.05)	
Participated in a DM group in the last 12										0.328
months*										
Yes	24	188	07	58	30.6	17	130	69.4	1	
No	290	2,219	116	896	40.4	174	1,323	59.6	1.53 (0.62; 3.79)	

N expanded based on the weights and the sampling design; % = proportion from N exp.; p-value = Pearson's Chi-square test. * Differences from the total are due to a lack of information in the variable. HDL= High-density lipoprotein; LDL: Low-density lipoprotein BMI: Body mass index.

To evaluate the change in OR with the introduction of potentially confounding variables, a model was proposed with those variables with a p-value < 0.20 in the bivariate analysis, maintaining a p-value < 0.05 and with biological plausibility. After adjustments, variables age group, education, smoking, physical activity, HDL cholesterol, and triglycerides, which were selected because the p-value in the bivariate analysis was less than 0.20, showed no statistical significance. Diagnosis and treatment times of ≥ 11 years remained significant in the model, so having been diagnosed and being treated for DM for more than ten years increased the chance of having CKD, even after adjustment for potentially confounding variables (Table 4).

Table 4. Description of factors associated with CKD in diabetic patients enrolled in the Family Health Strategy in Rio Branco, state of Acre, 2019.

Variables	ORadjusted (95% CI)
Age group (years)	
Up to 39	1
40 to 59	1.15 (0.30; 4.38)
≥ 60	2.59 (0.64; 10.48)
Education	
High school and over	1
Elementary School	1.30 (0.67; 2.54)
Illiterate	1.43 (0.64; 3.16)
DM control	
Yes	1
No	1.59 (0.77; 3.26)
Smoking	
Non-smoker	1
Smoker	0.43 (0.15; 1.25)
Physical activity	
Non-sedentary	1
Sedentary	1.52 (0.93; 2.46)
Triglycerides	
Desirable	1
High	1.50 (0.91; 2.48)
HDL cholesterol	
Desirable	1
High	1.44 (0.93; 2.22)
DM diagnosis time (years)	
< 5	1
6 to 10	1.14 (0.61; 2.14)
11 or more	1.74 (1.01; 3.02)
DM treatment time (years)	
< 5	1

6 to 10	1.13 (0.65; 1.97)
11 or more	1.87 (1.05; 3.33)

OR: odds ratio adjusted for age.

Discussion

The prevalence of CKD in diabetic patients was 40.0%, using the CKD-EPI equation, and was associated with the time of diagnosis and treatment of diabetes. Importantly, the prevalence of CKD in diabetic patients was higher than that identified in the Southeast of Brazil, with 243 individuals registered in HIPERDIA between May 2014 and August 2015, in which it was 20.2%, using the same criteria for defining CKD as in this research¹². A previous study found that approximately 20.0-50.0% of individuals with type 2 diabetes may develop CKD¹³.

In São Paulo, research carried out at a university hospital identified a 32.1% prevalence of diabetes in chronic kidney disease patients¹⁴. In Australia, a study involving 90,550 individuals over the age of 18 with type 2 diabetes mellitus found that 8.9% had CKD, while 7.3% did not have the disease, despite the clinical condition compatible with this diagnosis¹⁵.

Regarding the stages of CKD, according to the GFR, 16.5% of the sample were in stage 1, 9.5% in stage 2, 8.3% in stage 3a, 4.8% in stage 3b, 0.8% in stage 4, and 0.3% in stage 5. In India, a survey of 117 diabetic individuals revealed a prevalence of 45.3%, similar to that found here. The proportion of patients was 13.75% in stage 1, 41% in stage 2, 6.8% in stage 3a, 26.5% in stage 3b, and 12% in stage 4; there were no patients classified as stage 5¹⁶. In Spain, the prevalence of CKD in type 2 diabetic patients was 27.9%, a lower value than observed in Rio Branco, Acre, with 3.5% in stages 1, 6.4% in stage 2, 16.8% in stage 3, and 1.2% in stages 4 and 5¹⁷.

In Northeastern Brazil, an investigation evaluating the factors associated with the glomerular filtration rate in 143 patients with DM2 revealed that renal function deficit occurred in 7.0%, which presented a GFR < 60 mL/min/1.73 m². In just over half, the GFR was slightly reduced, given that 51.4% of individuals were classified in stage 2¹⁸. The data differ from our findings as they present higher prevalence in the early stages of CKD and lower in more advanced stages since 16.5% were in stages 3 to 5 in Rio Branco.

Patients with CKD in stages 1 to 3 (GFR > 30mL/min/1.73 m²) generally do not present evident clinical manifestations and are asymptomatic. The prevalence of CKD in type 2 diabetic patients is three times higher than in the non-diabetic population. The prevention of diabetic nephropathy is essential, as is the strict control of blood glucose and BP levels, the reduction of proteinuria, and the inhibition of the renin-angiotensin system to prevent or delay CKD¹⁶.

Among the factors associated with CKD, a higher prevalence was found with increasing age, although not statistically significant. This relationship is very well documented in the literature. In general, there is a decrease in renal function after 30 years of age (even in healthy individuals), with a decline in GFR by 1 mL/min/1.73 m² per year, resulting in a higher number of people with CKD in the older age groups ^{16,18}. In Barcelona, in a sample of 97,655 individuals aged 60 years or over, a positive association was reported in the multivariate analysis between GFR and age ¹⁹, a fact not observed in the present study.

Regarding lifestyle habits, in the bivariate analysis regarding physical activity, the prevalence was 44.4% in sedentary individuals and 32.7% in non-sedentary individuals but without significance after adjustment. In Japan, an analysis carried out on 120 patients with CKD showed reduced physical function as the disease progressed. The study showed that a sedentary lifestyle increases by 2.14 times the risk of kidney disease²⁰.

Exercise through physical activity is an important tool in the treatment of chronic diseases, including CKD, as it reduces cardiovascular risks and inflammatory processes while leading to better BP control, increased strength, cardiorespiratory fitness, and physical function²¹. Still considering lifestyle habits, the proportion of CKD in diabetic patients was higher in the group of smokers (41.4%) than in the group of non-smokers (21.6%). Smoking is intrinsically associated with the progression of kidney damage in patients with diabetic nephropathy or not and is an independent risk factor for kidney function, as it has vasoconstrictive, thromboembolic, and direct effects on the endothelium. Therefore, this habit should be discouraged¹⁸.

As for changes in the lipid profile, total cholesterol was elevated at 39.1%, HDL-c was low (46.1%), LDL-c was elevated (31%), and triglycerides were elevated (44%), not remaining significant in the multiple analysis. In a study carried out in Northeastern

Brazil, LDL-c was increased in 76.7% of patients, followed by a decrease in HDL-c in 61%, an increase in total cholesterol (47.3%), and an increase in triglycerides (40.4%)^{18,22}.

In the present study, in the bivariate analysis, despite not showing statistical significance, a higher proportion of CKD was found in the group of illiterate individuals, followed by elementary school and high school and over, with a prevalence of 43.0%, 42.7%, and 29.0%, respectively. In a sample of 9,720 participants in Australia, a lower risk of cardiovascular outcomes, as well as CKD progression, was reported in patients with a higher educational level²³. A systematic review in 2015 concluded that lower levels of education are a negative predictive factor for the health of kidney patients²⁴. As one of the components related to socioeconomic factors, education plays a key role in the development of CKD due to the difficulty in accessing health services to identify its onset and evolution, as well as the lack of knowledge about its progression factors²⁵.

The lack of association between the analyzed variables and CKD in diabetic patients in the present study should be seen with caution given that, in the literature, this information was widely researched and achieved statistical significance. Perhaps the lack of significance was due to the sample size or the chosen study design.

The longer time of diagnosis and treatment showed statistical significance after adjustment, which points to the long-term and continuous effect of diabetes on kidney function. A cohort study in the USA with veterans with newly diagnosed DM2 found a prevalence of CKD in stages 1 to 5 of 31.6%, with half classified as stages 3 or over²⁶. The moment of onset of DM2 is difficult to determine; however, the influence of DM on the onset of CKD is evident in this study.

The development of CKD in diabetic patients is a consequence of permanent hyperglycemia that produces metabolic and hemodynamic changes, being a relevant but not crucial factor in the development of glomerular damage. There are several mechanisms for the occurrence of these injuries, including activation of the sympathetic nervous system, sodium retention, and negative regulation of the natriuretic peptide system. Such changes can be found early without a reduction in GFR²⁷. In order to maintain normal blood glucose levels, hyperinsulinemia occurs, a condition that also contributes to renal fibrosis, by inducing the growth of mesangial cells, inhibiting apoptosis and reducing the activity of matrix metalloproteins^{28,29}.

As a limitation of the present study, the study design prevents causal inference, which means that associations must be evaluated with caution; therefore, it cannot be said whether they are the causes or consequences of CKD. Nevertheless, it is worth highlighting that the exploratory analysis of factors is extremely important and a fundamental tool for the early diagnosis of the disease.

Another limitation is the specific diagnosis of CKD based on a blood and urine sample to calculate GFR and albuminuria since the diagnosis is confirmed by the persistence of the condition for more than three months. A single measurement of GFR may not reflect an accurate scenario, as patients with acute renal failure may have been included as chronic kidney patients. In order to control errors in estimating GFR, the performance of laboratory tests in the same laboratory was standardized, and its estimation was made based on serum creatinine using the CKD-EPI equation.

The scarcity of Brazilian studies on the detection of CKD and associated factors in hypertensive and diabetic patients is highlighted; therefore, the present study is unprecedented in the population of Rio Branco. Also, it brought important clarifications, presenting the stages of CKD based on the definition proposed by KDIGO (2013)³⁰ and the prognostic risks, which contributes to comparisons with international and national studies. Most national studies used self-report or were conducted with patients on dialysis therapy or were based on GFR or proteinuria. In the case of the present research, both criteria were used to define CKD, which reduces the chance of errors. Population-based studies should be carried out in all regions of Brazil to evaluate regional differences and thus better understand the factors related to the onset or progression of CKD.

CONCLUSION

The prevalence of CKD among diabetic patients was high; the time of diagnosis and treatment were factors associated with kidney damage. These patients with changes in renal function require follow-up through periodic examinations and referral to specialized services. This follow-up is essential for early detection and delaying the progression of the disease through routine consultations and exams. Furthermore, promoting awareness and better knowledge about the topic among health professionals is an extremely important factor in improving monitoring in public health systems.

REFERENCES

- 1. Ogurtsova K, Guariguata L, Barengo NC, Ruiz PLD, Sacre JW, Karuranga S et al. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract [Internet]. 2022 Jan [cited 2023 Jan 12]; 103(2): 109118. Available from: https://doi.org/10.1016/j.diabres.2021.109118.
- 2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract [Internet]. 2014 Feb [cited 2022 Aug 21]; 103(2):137-49. Available from: https://pubmed.ncbi.nlm.nih.gov/24630390/.
- 3. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global Prevalence of Chronic Kidney Disease A Systematic Review and Meta-Analysis. PLoS One [Internet]. 2016 Jul 6 [cited 2022 Aug 13];11(7):e0158765. Available from: https://doi.org/10.1371/journal.pone.0158765.
- 4. de Boer IH, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al. Executive summary of the 2020 KDIGO diabetes management in CKD guideline: evidence-based advances in monitoring and treatment. Kidney Int [Internet]. 2020 Oct [cited 2022 Sep 03];98(4):839–48. Available from: https://pubmed.ncbi.nlm.nih.gov/32653403/.
- 5. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet [Internet]. 2020 Feb 29 [cited 2022 Sep 19]; 395:709–733. Available from: https://pubmed.ncbi.nlm.nih.gov/32061315/.
- 6. Liyanage T, Ninomiya T, Jha V. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet [Internet]. 2015 May 16 [cited 2022 Sep 30]; 385:1975–1982. Available from: https://pubmed.ncbi.nlm.nih.gov/25777665/.
- 7. Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. BMC Res Notes [Internet]. 2014 Jul 2 [cited 2022 Oct 01]; 7:415. Available from: https://pubmed.ncbi.nlm.nih.gov/24990184/.
- 8. Jitraknatee J, Ruengorn C, Nochaiwong S. Prevalence and Risk Factors of Chronic Kidney Disease among Type 2 Diabetes Patients: A Cross-Sectional Study in Primary Care Practice. Sci Rep [Internet]. 2020 Apr 10 [cited 2022 Oct 01]; 10(1):6205. Available from: https://pubmed.ncbi.nlm.nih.gov/32277150/.
- 9. Aguiar LK, Ladeira RM, Machado ÍE, Bernal RTI, Moura L, Malta DC. Fatores associados à doença renal crônica segundo critérios laboratoriais da Pesquisa Nacional de Saúde. Revista Brasileira de Epidemiologia [Internet]. 2020 Set 30 [cited 2022 Oct 01]; 23:e200101. Available from: https://doi.org/10.1590/1980-549720200101.
- 10. Amaral TLM, Amaral CA, Vasconcellos MTL, Monteiro GTR. Prevalência e fatores associados à doença renal crônica em idosos. Rev Saúde Pública [Internet]. 2019 Apr 26 [cited 2022 Oct 01]; 53:44. Available from: https://doi.org/10.11606/S1518-8787.2019053000727.

- 11. Levey AS, Becker C, Inker LA. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA [Internet]. 2015 Feb 24 [cited 2022 Set 03]; 313(8):837-46. Available from: https://doi.org/10.1001/jama.2015.0602.
- 12. Alves LF, Abreu TT, Neves NCS, Morais FA, Rosiany IL, Oliveira Júnior WV, Pinto SWL, et al. Prevalência da doença renal crônica em um município do sudeste do Brasil. Braz J Nephrol [Internet]. 2017 Jun 21 [cited 2022 Oct 14]; 39(2):126-34. Available from: https://www.bjnephrology.org/article/prevalencia-da-doenca-renal-cronica-em-um-municipio-do-sudeste-do-brasil.
- 13. Hoogeveen EK. The Epidemiology of Diabetic Kidney Disease. Kidney Dial [Internet]. 2022 Ago 01 [cited 2022 Oct 14]; 2(3):433-442. Available from: https://doi.org/10.3390/kidneydial2030038.
- 14. Pinho NA, Silva GV, Pierin AMG. Prevalência e fatores associados à doença renal crônica em pacientes internados em um hospital universitário na cidade de São Paulo, SP, Brasil. J Bras Nefrol [Internet]. 2015 Jan 01 [cited 2022 Oct 17]; 37(1): 91-7. Available from: https://doi.org/10.5935/0101-2800.20150013.
- 15. Manski-Nankervis JE, Thuraisingam S, Lau P, Blackberry I, Sluggett JK, Ilomaki J, et al. Screening and diagnosis of chronic kidney disease in people with type 2 diabetes attending Australian general practice. Aust J Prim Health [Internet]. 2018 Jul 04 [cited 2022 Oct 17]; 24(3):280-6. Available from: https://pubmed.ncbi.nlm.nih.gov/29807557/.
- 16. Soman S, Areekal B, Varghese R, John S, Gopan RS, Jacob QM, et al. Chronic kidney disease-prevalence and determinants among type 2 diabetes mellitus patients attending a primary care setting in central Kerala. IJCMPH [Internet]. 2018 Jun 22 [cited 2022 Oct 17]; 5(7):2776. Available from: https://doi.org/10.18203/2394-6040.ijcmph20182453.
- 17. Rodriguez-Poncelas A, Garre-Olmo J, Franch-Nadal J, Diez-Espino J, Mundet-Tuduri X, Barrot-De la Puente J, et al. Prevalence of chronic kidney disease in patients with type 2 diabetes in Spain: PERCEDIME2 study. BMC Nephrol [Internet]. 2013 Feb 22 [cited 2022 Oct 20];1 4:46. Available from: https://doi.org/10.1186/1471-2369-14-46.
- 18. Lira DGD, Maio R, Burgos MGPA, Lemos MCC, Compagnon MC, Silva RP. Fatores associados à taxa de filtração glomerular em pacientes com diabetes mellitus tipo 2 atendidos em hospital universitário no nordeste do Brasil. Nutr clín diet hosp [Internet]. 2016 Mar 30 [cited 2022 Oct 21]; 36(2): 111-23. Available from: https://pesquisa.bvsalud.org/portal/resource/en;/ibc-153513.
- 19. González BS, Pascual MR, Guijarro LR, González AF, Puertolas OC, Latre LMR. Enfermedad renal crónica en Atención Primaria: prevalencia y factores de riesgo asociados. Atención Primaria [Internet]. 2015 Apr 01 [cited 2022 Oct 21]; 47(4):236-45. Available from: https://doi.org/10.1016/j.aprim.2014.06.003.
- 20. Hiraki K, Yasuda T, Hotta C, Izawa KP, Morio Y, Watanabe S et al. Decreased physical function in pre-dialysis patients with chronic kidney disease. Clin Exp Nephrol [Internet]. 2013 Apr 01[cited 2022 Oct 21]; 17(2):225-31. Available from: https://pubmed.ncbi.nlm.nih.gov/22911116/.

- 21. WILKINSON, T. J.; SHUR, N. F.; SMITH, A. C. "Exercise as medicine" in chronic kidney disease. Scand J Med Sci Sports [Internet]. 2016 Aug 23 [cited 2022 Oct 22]; 26(8):985-8. Available from: https://pubmed.ncbi.nlm.nih.gov/27334146/
- 22. BASTOS MG, KIRSZTAJN GM. Doença renal crônica: importância do diagnóstico precoce, encaminhamento imediato e abordagem interdisciplinar estruturada para melhora do desfecho em pacientes ainda não submetidos à diálise. Braz J Nephorol [Internet]. 2011 Mar 01 [cited 2022 Oct 23]; 33(1):93-108. Available from: https://doi.org/10.1590/S0101-28002011000100013.
- 23. Morton RL, Schlackow I, Staplin N, Gray A, Cass A, Haynes R, et al. Impact of Educational Attainment on Health Outcomes in Moderate to Severe CKD. Am J Kidney Dis [Internet]. 2016 Jan 01 [cited 2022 Oct 23]; 67(1):31-9. Available from: https://pubmed.ncbi.nlm.nih.gov/26385817/.
- 24. Green JA, Cavanaugh KL. Understanding the influence of educational attainment on kidney health and opportunities for improved care. Am J Kidney Dis [Internet]. 2016 Jan 16 [cited 2022 Oct 25]; 67(1):31-9. Available from: https://doi.org/ 10.1053/j.ackd.2014.07.004.
- 25. Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, et al. Causal effects of education on chronic kidney disease: a Mendelian randomization study. Clin Kidney J [Internet]. 2020 Dec 22 [cited 2022 Oct 25]; 14(8):1932-8. Available from: https://pubmed.ncbi.nlm.nih.gov/34345417/.
- 26. Gatwood J, Chisholm-Burns M, Davis R, Thomas F, Potukuchi P, Hung A, et al. Evidence of chronic kidney disease in veterans with incident diabetes mellitus. PLoS One [Internet]. 2018 Feb [cited 2022 Oct 25]; 13(2): e0192712. Available from: https://pubmed.ncbi.nlm.nih.gov/29425235/.
- 27. Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol [Internet]. 2016 Dec 01 [cited 2022 Oct 26]; 311(6): F1087-F1108. Available from: https://pubmed.ncbi.nlm.nih.gov/27707707/.
- 28. Schrauben SJ, Cavanaugh KL, Fagerlin A, Ikizler TA, Ricardo AC, Eneanya ND et al. The Relationship of Disease-Specific Knowledge and Health Literacy With the Uptake of Self-Care Behaviors in CKD. Kidney Int Rep [Internet]. 2019 Oct 17 [cited 2022 Oct 26]; 5(1):48-57. Available from: https://pubmed.ncbi.nlm.nih.gov/31922060/.
- 29. Amorim RG, Guedes GS, Vasconcelos SML, Santos JCF. Kidney Disease in Diabetes Mellitus: Cross-Linking between Hyperglycemia, Redox Imbalance and Inflammation. Arq Bras Cardiol [Internet]. 2019 May 10 [cited 2022 Oct 26]; 112(5): 577-87. Available from: https://doi.org/10.5935/abc.20190077.
- 30. Levin A, Stevens PE, Bilous RW, Coresh J, Francisco ALM, Jong PE, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements [Internet]. 2013 Jan 01 [cited 2022 Jun 14]; 3(1):1-150. Available from: https://doi.org/10.1038/kisup.2012.73.

Submitted: March 27, 2023 Accepted: November 1, 2023

Published: March 27, 2024

Author contributions:

Ualison Oliveira Pontes: Conception; Data analysis and interpretation; Manuscript drafting; Approval of the final version of the manuscript.

Gina Torres Rego Monteiro: Conception; Data analysis and interpretation; Manuscript revision; Approval of the final version of the manuscript.

Cledir de Araújo Amaral: Conception; Data collection; Data analysis and interpretation; Manuscript revision; Approval of the final version of the manuscript.

Maurício Teixeira Leite de Vasconcellos: Conception; Data analysis and interpretation; Manuscript revision; Approval of the final version of the manuscript.

Thatiana Lameira Maciel Amaral: Conception; Data collection; Data analysis and interpretation; Manuscript revision; Approval of the final version of the manuscript.

Conflict of interest: There is no conflict of interest.

Financing: Fundação de Amparo à Pesquisa do Acre [FAPAC – Chamada PPSUS 004/2017, do Programa de Pesquisa para o SUS: gestão compartilhada em saúde (FAPAC-SESACRE Decit/SCTIE/MS-CNPq), Processo nº 6068-18-0000299, Termo de Outorga nº 032/2018].

Corresponding author:

Thatiana Lameira Maciel Amaral

Federal Institute of Acre

Rodovia BR 364, Km 04 - Distrito Industrial, Rio Branco - AC, Brazil. CEP 69920-900

E-mail: thatianalameira27@gmail.com

EDITORS:

Associate editor: Dr. Matias Nunes Frizzo

Editor-in-Chief: Dra. Adriane Cristina Bernat Kolankiewicz

This is an open access article distributed Under the terms of the Creative Commons license.

