Evaluation of forming limit diagrams of stainless Steel AISI 304 and AISI 430

Autores

DOI:

https://doi.org/10.21527/2237-6453.2023.59.14301

Palavras-chave:

stainless steels, formability limit curve, modified Nakazima test, principal strains, deep drawing

Resumo

Current quality standards require standardized tests in order to employ metal sheets in deep drawing processes. These tests are conducted aiming to assess their degree of formability in order to ensure that these materials can be formed without any defects such as wrinkling, earing, or even localized rupture. To evaluate whether a piece can be stamped without failures, the forming limit curve (FLC) is used, which provides data on the deformations that materials can withstand under certain modes of plastic deformation during stamping processes. In summary, the behavior of the maximum and minimum principal deformations of a stamped component is compared with the material's FLC: any combination located below the curve means deformations that the material can withstand, and consequently, those located above indicate its rupture. The objective of this article is to determine through experiments the FLCs of austenitic AISI 304 and ferritic AISI 430 stainless steels, using three different lubricants (Draw 58 GS, Neutron Super Corte 1123-21S, and Flash Stamp 140), in order to account for the influence of lubricants and, consequently, friction on the behavior of the forming limit curves.

Referências

ALLWOOD, J. M.; SHOULER, D. R. Generalised forming limit diagrams showing increased forming limits with non-planar stress states. International Journal of Plasticity, v. 25, p. 1.207-1.230, 2009.

BANABIC, D. et al. Development of a new procedure for the experimental determination of the Forming Limit Curves. Cirp Annals: Manufacturing Technology, Cluj-Napoca, p. 255-258, 2013.

BHADURI, A. Mechanical properties and working of metals and alloys. Singapore: Springer Singapore, 2018. p. 748.

BONG, H. J. et al. The forming limit diagram of ferritic stainless steel sheets: experiments and modeling. International Journal Of Mechanical Sciences, Gyeongbuk, v. 64, p. 1-10, 2012.

CARDOSO, M. C. et al. Avaliação da curva limite de conformação de um aço inoxidável austenítico. CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO, 7., 2013, Itatiaia, 2013. p. 1-10.

CARNEIRO, J. P. S. et al. Comparative study of formability and mechanical properties of AISI 316 and AISI 430 stainless steel. INTERNATIONAL CONFERENCE ON INTEGRITY-RELIABILITY-FAILURE, 5., 2016, Porto, 2016. p. 213-220.

CAVALER, L. C. C. Parâmetros de conformação para a estampagem incremental de chapas de aço inoxidável AISI 304L. 2010. 152 p. Tese (Doutorado Acadêmico) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais – PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

COLGAN, M.; MONAGHAN, J. Deep drawing process: analysis and experimente. Journal of Materials Processing Technology, v. 132, p. 25-41, 2003.

DWIVEDI, R.; AGNIHOTRI, G. Study of deep drawing process parameters. INTERNATIONAL CONFERENCE OF MATERIALS PROCESSING AND CHARACTERIZATION (ICMPC, 2016), 5., 2017, Bhopal: Índia, 2017. p. 820-826.

FOLLE, L. F. Estudo do coeficiente de atrito para processos de estampagem. 131 p. Tese (Doutorado Acadêmico) – Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais – PPGE3M, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2012.

FOLLE, L. F. et al. Escolha do lubrificante correto torna mais precisa a curva-limite de conformação. Corte e Conformação de Metais, 37, p. 64-76, abr. 2008.

GILAPA, L. C. M. Efeito do teor de cobre e dos caminhos de deformação na conformabilidade e na martensita induzida por deformação no aço inoxidável austenítico AISI 304. p. 130. Tese (Doutorado Acadêmico) – Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Joinvile, 2011.

GOODWIN, G. M. Application of strain analysis to sheet metal forming problems in the press shop. SAE Transactions, p. 380-387, 1968.

HASEK, V. Untersuchung und theoretische Beschreibung wichtiger Einflussgrossen auf das Grenzformaenderungschaubild. Blech 25, v. 5, v. 6, v. 10, v. 12), p. 213-220, p. 285-292, p. 493-499, p. 619-627, 1978.

HU, S. J.; MARCINIAK, Z.; DUNCAN, J. L. Mechanics of sheet metal forming. Woburn: Elsevier Science, 2002.

ISO. International Organization for Standardization. ISO 12004-1: Measurement and application of forminglimit diagrams in the press shop. Geneva, 2008a. 16 p.

ISO. International Organization for Standardization. ISO 12004-2: Determination of forming-limit curves in the laboratory. Geneva, 34 p., 2008b.

KARIMA, M.; CHANDRASEKARAN, N.; TSE, W. Process signatures in metal stamping: Basic concepts. J. Mater. Shaping Technol, v. 7, p. 169-183, 1989.

KEELER, S. Determination of forming limits in automotive stampings. SAE Transactions, 74 p. 1-9, 1966.

LI, F.F. et al. Experimental and theoretical study on the hot forming limit of 22MnB5 steel. The International Journal of Advanced Manufacturing Technology, v. 71, p. 297-306, 2014.

LUIZ, V. D.; RODRIGUES, P. C. de M. Failure analysis of AISI 430 stainless steel sheet under stretching and bending conditions. The International Journal of Advanced Manufacturing Technology, London, v. 121, p. 2.759-2.772, 2022.

MA, B. et al. Prediction of forming limit in DP590 steel sheet forming: An extended fracture criterion. Meterials and Design, v. 96, p. 401-408, 2016.

NAKAZIMA, K.; KIKUMA, T.; HASUKA, K. Study on the formability of steel sheets. Yamata Technical Report, v. 264, p. 8.517-8.530, 1968.

NAJMEDDIN, A.; JAVADIMANESH, A. Theoretical and experimental analysis of deep drawing cylindrical cup. Journal of Minerals and Materials Characterization and Engineering, v. 1, p. 336-342, 2013.

OLSSON, D. D.; BAY, N.; ANDREASEN, J. L. A quantitative lubricant test for deep drawing. International Journal of Surface Science And Engineering, Mariager, p. 2-12, 2010.

ROCHA, M. R. Estudos da conformabilidade dos aços inoxidáveis austeníticos 304N e 304H e suas correlações com as microestruturas obtidas. p. 154. Tese (Doutorado Acadêmico) – Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Joinvile, 2006.

SCHINO, A. di. Advances in materials science and engineering: prediction of AISI 304 stainless steel pipe deformation by FEM simulation. Metallurgist, Moscow, v. 63, p. 511-520, 2019.

SILVEIRA NETTO, S. E. Desenvolvimento do processo de construção de curvas limite de conformação. 2018. 90 p. Dissertação (Mestrado Acadêmico) – Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais – PPGE3M, Porto Alegre, 2018.

SLOTA, J.; SPISAK, E. Experimental FLC determination on high strength steel sheet metal. Acta Metallurgica Slovaca, v. 21, n. 4. p. 269-277, 2015.

UTHAISANGSUK, V. et al. Experimental and numerical failure criterion for formability prediction in sheet metal forming. Computational Materials Science, v. 43, p. 43-50, 2008.

ZAID, A. I. O. Effect of diferente lubricants on deep drawing of galvanized steel. International. Journal of Scientific & Engineering Research, v. 8, 2017.

Downloads

Publicado

2023-11-30

Como Citar

da Rocha, R. P., Riffel, M. H., & Schaeffer, L. (2023). Evaluation of forming limit diagrams of stainless Steel AISI 304 and AISI 430. Desenvolvimento Em Questão, 21(59), e14301. https://doi.org/10.21527/2237-6453.2023.59.14301

Edição

Seção

Artigos