Georeferencing and real-time temperature monitoring during the transport of human biological materials

Authors

DOI:

https://doi.org/10.21527/2176-7114.2025.50.15193

Keywords:

Materiais Biocompatíveis, Monitoramento Biológico, Transporte de Contaminantes

Abstract

Objective: To evaluate and compare the average temperature between active electric packaging and passive thermal packaging with artificial ice packs during the transport of human biological materials. Methods: The temperatures (in °C) of the transported biological samples were assessed over 6 consecutive days, using two different biological material transport boxes: (1) passive thermal box cooled with artificial ice packs, and (2) active electric box with a long-lasting lithium battery, cooled by a closed-circuit system using a compressor and coil. A total of 2,247.1 km was traveled, and 10,606 biological samples were collected across 11 different clinical analysis laboratories. Temperature monitoring was carried out through sensors installed in both boxes, allowing real-time online tracking and temperature monitoring. Results: On all analyzed days, the active box proved more efficient than the passive box, maintaining the average temperature within the established requirements (2 to 8°C) throughout the journey until final delivery. Environmental temperature variation did not directly affect the internal temperature of either packaging used in this type of transport. Conclusion: Active electric packaging is more efficient when compared to passive packaging cooled with artificial ice packs, as it maintained the correct temperature throughout the entire biological material transport process.

References

1. Gabriel Jr. A, Silva AAB, De Martino MC, Razvickas WJ, Silva RC, Viana AM, et al. Validação do sistema de transporte e das dosagens de amostras biológicas enviadas para a central de um laboratório de grande porte. J Bras Patol Med Lab. 2007;43(4):235-40.

2. Olson WC, Smolkin ME, Farris EM, Fink RJ, Czarkowski AR, Fink JH, et al. Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function. J Transl Med. 2011;9:26.

3. Agência Nacional de Vigilância Sanitária (ANVISA). Manual de vigilância sanitária sobre o transporte de material biológico humano para fins de diagnóstico clínico. Brasília: ANVISA, 2015. Disponível em: <https://www.gov.br/anvisa/pt-br/assuntos/sangue/trans porte-de-material-biologico/manual-de-transporte-de-material-biologico-humano.pdf>. Acesso em: 20 fev. 2023.

4. Oliveira RGAM, Silva GAF. Os principais erros da fase pré-analítica de exames laboratoriais. Revista Brasileira de Análises Clínicas. 2022;54(1):e20220330.

5. Brisolara ML. Controle de qualidade em análises clínicas. In: Xavier RM, et al. (Org.). Laboratório na prática clínica: consulta rápida. Porto Alegre: Artmed; 2016. p. 91-109

6. Salinas M, López-Garrigós M, Yago M, Ortuño M, Carratala A, Aguado C, et al. Evaluación de la calidad en el laboratorio en la fase preanalítica: un estudio multicéntrico. Rev Calid Asist. 2011;26(4):264-8.

7. Robertson J, Franzel L, Maire D. Innovations in cold chain equipment for immunization supply chains. Vaccine. 2017;35(17):2252-9.

8. Aires CAM, Araújo CFM, Nobre ML, Rusak LA, Assis UG, Lopéz DCM, et al. Biossegurança em transporte de material biológico no âmbito nacional: um guia breve. Rev Pan-Amaz Saude. 2015;6(2):73-81.

9. Ashmore LM, Shopp GM, Edwards BS. Lymphocyte subset analysis by flow cytometry. Comparison of three different staining techniques and effects of blood storage. J Immunol Methods. 1989;118(2):209-15.

10. Weiblen BJ, Debell K, Giorgio A, Valeri CR. Monoclonal antibody testing of lymphocytes after overnight storage. J Immunol Methods. 1984;70(2):179-83.

11. Liu Z, Guo H, Zhao Y, Hu B, Shi L, Lang L, et al. Research on the optimized route of cold chain logistics transportation of fresh products in context of energy-saving and emission reduction. Math Biosci Eng. 2021;18(2):1926-40.

12. Hochman B, Nahas FX, Oliveira Filho RS, Ferreira LM. Desenhos de pesquisa. Acta Cir Bras. 2005;20:2-9.

13. Field A. Descobrindo a estatística usando o SPSS. 6. ed. Porto Alegre: Artmed; 2015.

14. Guder WG, Narayanan S, Wisser H, Zawta B. Amostras: do paciente para o laboratório, impacto das variáveis pré-analíticas sobre a qualidade dos resultados de laboratório. São Paulo: Câmara Brasileira do Livro; 1996.

15. Teixeira P, Valle S. (Orgs). Biossegurança: uma abordagem multidisciplinar. Rio de Janeiro: Fiocruz; 2010.

16. Patine FS, Lourenção LG, Wysocki AD, Santos MLSG, Rodrigues IC, Vendramini SHF. Analysis of vaccine loss due to temperature change. Rev Bras Enferm. 2021;74(1):e20190762.

17. Roiz C. Normas e procedimentos em transportes de materiais humanos biológicos. São Paulo: Thecalone Company; 2019.

18. Hcolnik W. Erros relacionados ao laboratório. In: Sousa P, Mendes W. (Orgs.). Segurança do paciente: conhecendo os riscos nas organizações de saúde. 2. ed. Rio de Janeiro: Fiocruz; 2019, p. 237-262.

19. Kartoglu U, Ames H. Ensuring quality and integrity of vaccines throughout the cold chain: the role of temperature monitoring. Expert Rev Vaccines. 2022;21(6):799-810.

20. Lloyd J, Cheyne J. The origins of the vaccine cold chain and a glimpse of the future. Vaccine. 2017;35(17):2115-20.

21. Kumar S, Lennon P, Muller N, Uranw S, Mvundura M, Sibole A, et al. Using long-range freeze-preventive vaccine carriers in Nepal: a study of equipment performance, acceptability, systems fit, and cost. Vaccine X. 2022;10:100146.

22. Kumar S, Lennon P, Uranw S, Fielding T, Mvundura M, Drolet A, et al. Using freeze-preventive cold boxes in rural Nepal: a study of equipment performance, acceptability, system fit, and cost. Vaccine X. 2024;18:100467.

23. Kumru OS, Joshi SB, Smith DE, Middaugh CR, Prusik T, Volkin DB. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals. 2014;42(5):237-59.

Published

2025-03-18

How to Cite

Diniz, R. M., & Pfrimer, I. A. H. (2025). Georeferencing and real-time temperature monitoring during the transport of human biological materials. Revista Contexto & Saúde, 25(50), e15193. https://doi.org/10.21527/2176-7114.2025.50.15193

Issue

Section

ORIGINAL ARTICLE