Acute effects of slow, controlled breathing exercises on arterial pressure and autonomic cardiac modulation in hypertensive patients

Autores/as

DOI:

https://doi.org/10.21527/2176-7114.2024.48.13894

Palabras clave:

Hypertension, Systolic arterial pressure, Autonomic nervous system, Sympathetic nervous system, Breathing exercises

Resumen

The aim of the present study was to evaluate the influence of slow, controlled breathing exercises (SCBE) on arterial pressure and autonomic cardiac modulation in hypertensive patients. 29 hypertensive patients were evaluation in two data collections (period between 1 to 3 days). In each evaluation, data were collected after 10 min of spontaneous breathing (between 12 and 20 breaths per minute – bpm) and 10 min of SCBE (12 bpm, in the rhythm of standardized verbal stimulus). The arterial pressure was evaluated by a multi-parameter monitor and the autonomic cardiac modulation by the rate variability technique. The SCBE reduced systolic arterial pressure (1st evaluation: -4.8 mmHg and 2nd evaluation: -4.3 mmHg), decreased sympathetic activity by 18% and modified autonomic modulation by about 50%. SCBE reduced both systolic arterial pressure and sympathetic activity and can be used in control arterial pressure of hypertensive patients.

Citas

Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics’2017 Update: A Report from the American Heart Association. Circulation 2017;135(10):146-603. DOI: 10.1161/CIR.0000000000000485

Vaseghi M, Shivkumar K. The Role of the Autonomic Nervous System in Sudden Cardiac Death. Prog Cardiovasc Dis 2008;50(6):404-419. DOI: 10.1016/j.pcad.2008.01.003

Merino-Jiménez C, Miguel F, Feria Pliego JA, et al. Sympathetic Hyperactivity and Age Affect Segregation and Expression of Neurotransmitters. Front Cell Neurosci 2018;12. DOI: 10.3389/fncel.2018.00411

Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 2014;5(1.040):1-19. DOI: 10.3389/fpsyg.2014.01040

Rizas KD, Nieminen T, Barthel P, et al. Sympathetic activity-associated periodic repolarization dynamics predict mortality following myocardial infarction. Journal of Clinical Investigation 2014;124(4):1.770-1.780. DOI: 10.1172/JCI70085

Task Force of TES of C and TNAS of P and E. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996;17(x):354-381. DOI: https://doi.org/10.1161/01.CIR.93.5.1043

Whelton PK, Carey RM. The 2017 Clinical Practice Guideline for High Blood Pressure. Jama – Journal of the American Medical Association 2017;318(21):2.073-2.074. DOI: 10.1001/jama.2017.18209

Dudenbostel T, Siddiqui M, Oparil S, et al. Refractory hypertension: A novel phenotype of antihypertensive treatment failure. Hypertension 2016;67(6):1.085-1.092. DOI: 10.1161/HYPERTENSIONAHA.116.06587.

Gkaliagkousi E, Gavriilaki E, Douma S. Effects of acute and chronic exercise in patients with essential hypertension: Benefits and risks. Am J Hypertens 2015;28(4):429-439. DOI: 10.1093/ajh/hpu203

Hering D, Narkiewicz K. Sympathetic Nervous System and Arterial Hypertension: New Perspectives, New Data. Kardiol Pol 2013;71(5):441-446. DOI: 10.5603/KP.2013.0089

do Amaral Sartori S, Stein C, Coronel CC, et al. Effects of Transcutaneous Electrical Nerve Stimulation in Autonomic Nervous System of Hypertensive Patients: A Randomized Controlled Trial. Curr Hypertens Rev 2018;14(1):66-71. DOI: 10.2174/1573402114666180416155528

Chang Q, Liu R, Li C, et al. Effects of slow breathing rate on blood pressure and heart rate variabilities in essential hypertension. Int J Cardiol 2015;185:52-54. DOI: 10.1016/j.ijcard.2015.02.105

Levin CJ, Swoap SJ. The impact of deep breathing and alternate nostril breathing on heart rate variability: a human physiology laboratory. Adv Physiol Educ 2019;43(x):270-276. DOI: 10.1152/advan.00019.2019

Li C, Chang Q, Zhang J, et al. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension. Medicine (United States) 2018;97(18). DOI: 10.1097/MD.0000000000010639

Melo HM, Martins TC, Nascimento LM, et al. Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing. Annals of Noninvasive Electrocardiology 2018;23(5):1-9. DOI: 10.1111/anec.12565

Sasaki K, Maruyama R. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity. Tohoku Journal of Experimental Medicine 2014;233(3):155-163. DOI: 10.1620/tjem.233.155

Zou Y, Zhao X, Hou YY, et al. Meta-Analysis of Effects of Voluntary Slow Breathing Exercises for Control of Heart Rate and Blood Pressure in Patients With Cardiovascular Diseases. American Journal of Cardiology 2017;120(1):148-153. DOI: 10.1016/j.amjcard.2017.03.247

Stein C, Dal Lago P, Ferreira JB, et al. Transcutaneous electrical nerve stimulation at different frequencies on heart rate variability in healthy subjects. Auton Neurosci 2011;165(2):205-208. DOI: 10.1016/j.autneu.2011.07.003

de Nardi AT, Hauck M, Franco OS, et al. Different frequencies of transcutaneous electrical nerve stimulation on sympatho-vagal balance. Acta Scientiarum – Health Sciences 2017;39(1):9-16. DOI: 10.4025/actascihealthsci.v39i1.32854

Franco OS, Júnior AOS, Signori LU, et al. Cardiac autonomic modulation assessed by heart rate variability in children with asthma. Pediatr Pulmonol 2020;55(6):1.334-1.339. DOI: 10.1002/ppul.24714

McCraty R, Shaffer F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 2015;4(1):46-61. DOI: 10.7453/gahmj.2014.073

Russo MA, Santarelli DM, O’Rourke D. The physiological effects of slow breathing in the healthy human. Breathe 2017;13(4):298-309. DOI: 10.1183/20734735.009817

Berntson GG, Cacioppo JT, Quigley KS. Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 1993;30(x):183-196. DOI: https://doi.org/10.1111/j.1469-8986.1993.tb01731.x

Mestanik M, Mestanikova A, Langer P, et al. Respiratory sinus arrhythmia – testing the method of choice for evaluation of cardiovagal regulation. Respir Physiol Neurobiol 2019;259:86-92. DOI: 10.1016/j.resp.2018.08.002

Lipp MEN. Stress management training and systemic hypertension. Rev Bras Hipertens 2007;14(2):89-93.

Lopes DA da C, Souza ALT de, Gusmão JL de. Effect of slow and guided breathing exercise on blood pressure in institutionalized hypertensive elderly. Saúde e Pesquisa 2021;14(4):1-12. DOI: 10.17765/2176-9206.2021v14n4e9025

Pinheiro CH da J, Medeiros RAR, Pinheiro DGM, et al. Spontaneous Respiratory Modulation Improves Cardiovascular Control in Essential Hypertension. Arq Bras Cardiol 2007;88(6):576-583. DOI: https://doi.org/10.1590/S0066-782X2007000600005

Signori LU, Rubin Neto LJ, Lima KS de, et al. Influence of Controlled Breath on Healthy Adult Autonomic Heart Modulation. Acta Scientiarum Health Sciences 2022; 45(1):1-17. DOI: https://doi.org/10.4025/actascihealthsci.v45i1.60429

Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. Nature 2018;558(7708):73-79. DOI: 10.1038/s41586-018-0175-2

Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 2016;6(3):1.239-1.278. DOI: 10.1002/CPHY.C150037

Descargas

Publicado

2024-02-21

Cómo citar

Rubin Neto, L. J., Puntel, G. O., Ferrão, D. Q. ., Lamberti, M. H., Arbiza, B. C. C., de Lima, K. S., da Silva , A. M. V., & Signori, L. U. (2024). Acute effects of slow, controlled breathing exercises on arterial pressure and autonomic cardiac modulation in hypertensive patients. Revista Contexto &Amp; Saúde, 24(48), e13894. https://doi.org/10.21527/2176-7114.2024.48.13894

Número

Sección

Artigo Original