Dieta hipocalórica na vida perinatal seguida de obesogênica exacerba distúrbios metabólicos na prole de ratos wistar

Autores

DOI:

https://doi.org/10.21527/2176-7114.2024.48.13981

Palavras-chave:

Plasticidade adaptativa, dieta hiperlipídica, obesidade, ratos

Resumo

Avaliou-se os efeitos de uma dieta obesogênica pós-desmame sobre o crescimento e parâmetros metabólicos da prole adulta submetida a uma dieta hipocalórica na vida perinatal. Ratos Wistar machos foram divididos em dois grupos de acordo com a dieta materna durante a gestação e lactação: Controle (C, recebeu dieta normocalórica) e dieta hipocalórica durante a gestação e lactação (H, recebeu dieta hipocalórica). Ao desmame, metade do número de animais de cada grupo foi dividido em mais dois grupos de acordo com a dieta pós-desmame: controle (CC, n=12), controle e submetido à dieta obesogênica (CO n=11), dieta hipocalórica e controle (HC, n=14) e dieta hipocalórica e obesogênica (HO, n=9). O peso corporal materno, a ingestão de alimentos e a ingestão de energia foram registrados diariamente. Na prole, foi avaliado o peso ao nascer, taxa de crescimento e características físicas. Aos 120 dias, foram analisados o consumo alimentar relativo, teste de tolerância à glicose (GTT), perfil bioquímico e peso dos órgãos. As mães submetidas a dieta hipocalórica não apresentaram diferença no peso corporal durante a gestação ou lactação mesmo com menor consumo de energia. Na prole, as ninhadas de mães alimentadas com uma dieta hipocalórica mostraram um déficit nas características físicas (restrição do crescimento e baixo peso). O efeito de uma dieta obesogênica sobre o peso da gordura visceral, GTT e hipercolesterolemia foi mais pronunciada em animais submetidos a uma dieta hipocalórica perinatal seguida por uma dieta obesogênica ao longo da vida. Conclusão: Nossas observações ampliam a evidência de que ambientes sociais com escassez alimentar e/ou ambientes obesogênicos determinam uma maior suscetibilidade à obesidade.

Referências

Velazquez MA, Fleming TP, Watkins AJ. Periconceptional environment and the developmental origins of disease. Journal of Endocrinology. 2019 Jul;242(1):T33–49.

Sreevidya Sreekantha, Wang Y, Sakurai R, Liu J, Rehan VK. Maternal food restriction‐induced intrauterine growth restriction in a rat model leads to sex‐specific adipogenic programming. The FASEB Journal [Internet]. 2020 Oct 13 [cited 2023 Nov 19];34(12):16073–85.

Wen Y, Cheng S, Lu J, He X, Jiao Z, Xu D, et al. Dysfunction of the hypothalamic‑pituitary‑adrenal axis in male rat offspring with prenatal food restriction: Fetal programming of hypothalamic hyperexcitability and poor hippocampal feedback. Molecular Medicine Reports. 2021 Nov 18;25(1).

Fleming TP, Sun C, Oleg Denisenko, Caetano L, Anan Aljahdali, Gould JM, et al. Environmental Exposures around Conception: Developmental Pathways Leading to Lifetime Disease Risk. 2021 Sep 6;18(17):9380–0.

Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Frontiers in Endocrinology. 2022 Nov 11;13.

Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: Theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol [Internet]. 2011;106(1):272–80. Available from: http://dx.doi.org/10.1016/j.pbiomolbio.2010.12.008

Ajuogu PK, Wolden M, McFarlane JR, Hart RA, Carlson DJ, Van der Touw T, et al. Effect of low- and high-protein maternal diets during gestation on reproductive outcomes in the rat: a systematic review and meta-analysis. Journal of Animal Science. 2019 Dec 19;98(1).

Kim J, Choi A, Kwon YH. Maternal Protein Restriction Altered Insulin Resistance and Inflammation-Associated Gene Expression in Adipose Tissue of Young Adult Mouse Offspring in Response to a High-Fat Diet. Nutrients. 2020 Apr 16;12(4):1103.

Devarajan A, Rajasekaran NS, Valburg C, Ganapathy E, Bindra S, Freije WA. Maternal perinatal calorie restriction temporally regulates the hepatic autophagy and redox status in male rat. Free Radic Biol Med. 2019;130:592–600.

Do Nascimento E, De Santana Muniz G, Das Graças De Santana Muniz M, De Souza Alexandre L, Da Rocha LS, Leandro CG, et al. Unlimited access to low-energy diet causes acute malnutrition in dams and alters biometric and biochemical parameters in offspring. J Dev Orig Health Dis. 2014;5(1):45–55.

Monte C. Malnutrition: a secular challenge to child nutrition. J Pediatr (Rio J). 2000;76(8):285–97.

Millward DJ. Protein requirements of infants. Am J Clin Nutr. 1989;50(2):406–7.

Krechowec SO, Vickers M, Gertler A, Breier BH. Prenatal influences on leptin sensitivity and susceptibility to diet-induced obesity. J Endocrinol. 2006;189(2):355–63.

Thompson NM, Norman AM, Donkin SS, Shankar RR, Vickers MH, Miles JL, et al. Prenatal and postnatal pathways to obesity: Different underlying mechanisms, different metabolic outcomes. Endocrinology. 2007;148(5):2345–54.

Vickers MH, Breier BH, McCarthy D, Gluckman PD. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol - Regul Integr Comp Physiol. 2003;285(1 54-1):271–3.

MacKay H, Khazall R, Patterson ZR, Wellman M, Abizaid A. Rats perinatally exposed to food restriction and high-fat diet show differences in adipose tissue gene expression under chronic caloric restriction. Adipocyte. 2013;2(4):237–45.

Lopes De Souza S, Orozco-Solis R, Grit I, Manhães De Castro R, Bolaños-Jiménez F. Perinatal protein restriction reduces the inhibitory action of serotonin on food intake. Eur J Neurosci. 2008;27(6):1400–8.

Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve. Methodological aspects. Diabetes Care. 1990;13(2):172–5.

William T. Friedewald, Levy RI, Fredrickson DS. Estimation of the Concentration of Low-Density Lipoprotein Cholesterolin Plasma,Without Useof the Preparative Ultracentrifuge. J Chem Inf Model. 1972;18(6):1689–99.

Bateson P, Gluckman P, Hanson M. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis. J Physiol. 2014;592(11):2357–68.

Nascimento E do, Muniz G de S, Silva AAM da, Santana R de A, Vasconcelos DAA de, Cavalcante TCF. Western-style diet changes murinometric and metabolic parameters of rat offspring in time-specific windows. Brazilian J Dev. 2020;6(7):48355–72.

Nascimento E, Guzman-Quevedo O, Delacourt N, da Silva Aragão R, Perez-Garcia G, de Souza SL, et al. Long-Lasting Effect of Perinatal Exposure to L-tryptophan on Circadian Clock of Primary Cell Lines Established from Male Offspring Born from Mothers Fed on Dietary Protein Restriction. PLoS One. 2013;8(2).

Roberts SB, Heyman MB. Dietary composition and obesity: Do we need to look beyond dietary fat? J Nutr. 2000;130(2 SUPPL.):272–5.

Nakashima Y, Sato A. PUPS of dams fed low-fat diet during pregnancy and lactation showed strong preference for high-fat diet to achieve optimal growth. J Nutr Sci Vitaminol (Tokyo). 2011;57(5):355–63.

Magnuson AM, Regan DP, Booth AD, Fouts JK, Solt CM, Hill JL, et al. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. Eur J Nutr [Internet]. 2020;59(4):1641–54. Available from: https://doi.org/10.1007/s00394-019-02019-z

Butruille L, Marousez L, Pourpe C, Oger F, Lecoutre S, Catheline D, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes [Internet]. 2019;43(12):2381–93. Available from: http://dx.doi.org/10.1038/s41366-018-0310-z

Viraragavan A, Willmer T, Patel O, Basson A, Johnson R, Pheiffer C. Cafeteria diet induces global and Slc27a3-specific hypomethylation in male Wistar rats. Adipocyte [Internet]. 2021;10(1):108–18. Available from: https://doi.org/10.1080/21623945.2021.1886697

Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia. 2005;48(3):547–52.

Huang BW, Chiang MT, Yao HT, Chiang W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes, Obes Metab. 2004;6(2):120–6.

Schaalan M, El-Abhar HS, Barakat M, El-Denshary ES. Westernized-like-diet-fed rats: effect on glucose homeostasis, lipid profile, and adipocyte hormones and their modulation by rosiglitazone and glimepiride. J Diabetes Complications [Internet]. 2009;23(3):199–208. Available from: http://dx.doi.org/10.1016/j.jdiacomp.2008.02.003

Alejandro EU, Jo S, Akhaphong B, Llacer PR, Gianchandani M, Gregg B, et al. Maternal low-protein diet on the last week of pregnancy contributes to insulin resistance 2 and β-cell dysfunction in the mouse offspring. 2020.

Vidal-Santos R, Macedo FN, Santana MNS, De Melo VU, De Brito Alves JL, Santos MRV, et al. Western diet in the perinatal period promotes dysautonomia in the offspring of adult rats. J Dev Orig Health Dis. 2017;8(2):216–25.

Zinkhan EK, Yu B, Callaway CW, McKnight RA. Intrauterine growth restriction combined with a maternal high-fat diet increased adiposity and serum corticosterone levels in adult rat offspring. J Dev Orig Health Dis. 2018;9(3):315–28.

Downloads

Publicado

2024-06-24

Como Citar

Araújo, L. L., do Nascimento, E., Franco, E. de S., Souto, V. F., Melo, M. C. A. de L., Muniz, G. de S., & Leandro, C. V. G. (2024). Dieta hipocalórica na vida perinatal seguida de obesogênica exacerba distúrbios metabólicos na prole de ratos wistar. Revista Contexto &Amp; Saúde, 24(48), e13981. https://doi.org/10.21527/2176-7114.2024.48.13981

Edição

Seção

Artigo Original