Potencial antioxidante de plantas da Amazônia: Uma revisão integrativa

Autores

DOI:

https://doi.org/10.21527/2176-7114.2025.50.15659

Palavras-chave:

Plantas, Ecossistema amazônico, Antioxidantes

Resumo

Objetivo: revisar a literatura científica que aborda a capacidade antioxidante de plantas da Amazônia. Métodos: Trata-se de uma revisão integrativa em artigos de língua inglesa realizada no PubMed/MEDLINE, no período de 2002 a 2022. Resultados: A busca resultou em 21 artigos elegíveis nos quais foram identificadas 24 plantas com capacidade antioxidante distribuídas em 15 famílias. Foi verificado que os estudos não possuem metodologia padronizada, o que dificulta a comparação entre as plantas. Apesar disso, foi possível definir as famílias Myrtaceae e Lauraceae como as que possuem as espécies vegetais com maior potencial antioxidante, sendo a Psidium guajava (32000 µmol TE/g) e Aniba canelilla (1,8ppm) suas representantes com maior potencial, respectivamente. Conclusão: Uma diversidade de plantas amazônicas com potencial antioxidante foi observada em diferentes famílias botânicas. A análise dos estudos aponta compostos fenólicos, como flavonóides, taninos, cromonas, FAE e quercetina, como principais determinantes para que essas espécies tenham essa capacidade antioxidante. Desenvolvimentos futuros nesta linha de pesquisa incluem mais estudos com as plantas com maior capacidade antioxidante com foco na análise dos constituintes químicos que compõem as amostras das plantas amazônicas.

Referências

1. Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta - Gen Subj. 2014;1840(9):2709–29.

2. Halliwell B. Letters to the Editors THE DEFINITION AND MEASUREMENT OF ANTIOXIDANTS IN. Free Radic Biol Med. 1995;18(I):125–6.

3. Montezano AC, Touyz RM. Reactive oxygen species and endothelial function - Role of nitric oxide synthase uncoupling and nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol. 2012;110(1):87–94.

4. Arnr C, Rhm M, VPD Thiago Brasileiro de Vasconcelos B, Richelly Nunes Rocha Cardoso A, Batista Josino J, Hermelinda Maia Macena R, et al. Radicais livres e estresse oxidativo. UNOPAR Cient Ciênc Biol Saúde. 2014;16(3):213–9.

5. Singh TS, Roy SS, Kshetri P, Ansari MA, Sharma SK, Verma MR, et al. Comparative study on phenolic, flavonoids and in vitro antioxidant activity of wild edible plants from Loktak Lake wetland ecosystem under North East Indian Himalayan Region. Nat Prod Res. 2021;35(24):6045–8.

6. Em PDEP, Doutorado F, Oriá RB. Universidade Federal do Ceará Universidade Federal do Ceará Universidade Federal do Ceará. 2004;2:1–20.

7. Sucupira NR, Silva AB Da, Pereira G, Costa JN Da. Métodos Para Determinação da Atividade Antioxidante de Frutos. UNOPAR Científica Ciências Biológicas e da Saúde. 2014;14(4):263–9.

8. Falzon CC, Balabanova A. Phytotherapy: An Introduction to Herbal Medicine. Prim Care - Clin Off Pract. 2017;44(2):217–27.

9. Campos C, Turck P, Tavares AMV, Corssac G, Lacerda D, Araujo A, et al. Efeitos do Óleo de Copaíba em Marcadores Periféricos de Estresse Oxidativo em um Modelo de Cor Pulmonale em Ratos. Arq Bras Cardiol. 2021;117(6):1106–12.

10. Conegundes JLM, Silva JM da, Mendes R de F, Fernandes MF, Pinto N de CC, Almeida MA de, et al. Anti-inflammatory and antinociceptive activity of Siparuna guianensis Aublet, an amazonian plant traditionally used by indigenous communities. J Ethnopharmacol. 2021;265(September 2020).

11. de Vargas FS, Almeida PDO, de Boleti APA, Pereira MM, de Souza TP, de Vasconcellos MC, et al. Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complement Altern Med [Internet]. 2016;16(1):1–8. Available from: http://dx.doi.org/10.1186/s12906-016-1061-9

12. Gomis-Tena J, Brown BM, Cano J, Trenor B, Yang PC, Saiz J, et al. When Does the IC50Accurately Assess the Blocking Potency of a Drug? J Chem Inf Model. 2020;60(3):1779–90.

13. Oliveira GLS. Determinação da capacidade antioxidante de produtos naturais in vitro pelo método do dpph•: Estudo de revisão. Rev Bras Plantas Med. 2015;17(1):36–44.

14. Tomei RR, Salvador MJ. Metodologias analíticas atuais para avaliação da atividade antioxidante de produtos naturais. XI Encontro Lat Am Iniciação Científica e VII Encontro Lat Am Pós-Graduação. 2007;1963–7.

15. Stämpfli R, Brühwiler P, Mourad S, Verdejo R, Shaffer M. Development and characterisation of carbon nanotube-reinforced polyurethane foams. EMPA Act. 2007;26(2007):51.

16. Reis EC. AVALIAÇÃO DA ATIVIDADE ANTIOXIDANTE DOS EXTRATOS ETANÓLICOS DOS FRUTOS DE Eugenia moraviana E Eugenia blastantha AVALIAÇÃO DA ATIVIDADE ANTIOXIDANTE DOS EXTRATOS DOS FRUTOS DE Eugenia moraviana E Eugenia blastantha. 2016;51.

17. de Souza GAG, da Silva NC, de Souza J, de Oliveira KRM, da Fonseca AL, Baratto LC, et al. In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest. Phytomedicine. 2017;24:111–8.

18. Hall J, Soole K, Bentham R. Hydrocarbon phytoremediation in the family Fabaceae-a review. Int J Phytoremediation. 2011;13(4):317–32.

19. Amen YM, Marzouk AM, Zaghloul MG, Afifi MS. The genus Machaerium (Fabaceae): Taxonomy, phytochemistry, traditional uses and biological activities. Nat Prod Res. 2015;29(15):1388–405.

20. Martins FJ, Caneschi CA, Vieira JLF, Barbosa W, Raposo NRB. Antioxidant activity and potential photoprotective from amazon native flora extracts. J Photochem Photobiol B Biol [Internet]. 2016;161:34–9. Available from: http://dx.doi.org/10.1016/j.jphotobiol.2016.05.012

21. Gelmini F, Beretta G, Anselmi C, Centini M, Magni P, Ruscica M, et al. GC-MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect. Int J Pharm [Internet]. 2013;440(2):170–8. Available from: http://dx.doi.org/10.1016/j.ijpharm.2012.08.021

22. Prazeres LDKT, Aragão TP, Brito SA, Almeida CLF, Silva AD, De Paula MMF, et al. Antioxidant and Antiulcerogenic Activity of the Dry Extract of Pods of Libidibia ferrea Mart. ex Tul. (Fabaceae). Oxid Med Cell Longev. 2019;2019.

23. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci [Internet]. 2012;196:67–76. Available from: http://dx.doi.org/10.1016/j.plantsci.2012.07.014

24. Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63(7):1035–42.

25. Martins D, Nunez CV. Secondary metabolites from Rubiaceae species. Molecules. 2015;20(7):13422–95.

26. Sandoval M, Okuhama NN, Zhang XJ, Condezo LA, Lao J, Angeles FM, et al. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine. 2002;9(4):325–37.

27. Rabelo Rodrigues F, de Souza Ramos A, Fernandes Amaral AC, Pinto Ferreira JL, da Silva Carneiro C, Rocha de Andrade Silva J. Evaluation of Amazon fruits: chemical and nutritional studies on Borojoa sorbilis. J Sci Food Agric. 2018;98(10):3943–52.

28. Peixoto H, Roxo M, Koolen H, Da Silva F, Silva E, Braun MS, et al. Calycophyllum spruceanum (Benth.), the amazonian “tree of youth” prolongs longevity and enhances stress resistance in Caenorhabditis elegans. Molecules. 2018;23(3).

29. Marinho TA, Oliveira MG, Menezes-Filho ACP, Castro CFS, Oliveira IMM, Borges LL, et al. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of anadenanthera peregrina stem bark. Brazilian J Biol. 2022;82:1–12.

30. Santos AB, Ribeiro-Oliveira JP, Carvalho CM. Sobre a botânica, a etnofarmacologia e a química de Calycophyllum spruceanum (Benth.) Hook. f. ex K. Schum. Rev Bras Plantas Med. 2016;18(1):383–9.

31. Pisoschi AM, Pop A, Cimpeanu C, Predoi G. Antioxidant capacity determination in plants and plant-derived products: A review. Oxid Med Cell Longev. 2016;2016.

32. Sunday O. Okoh, Benson C. Iweriebor, Omobola O. Okoh AIO. Bioactive Constituents, Radical Scavenging, and Antibacterial Properties of the Leaves and Stem Essential Oils from Peperomia pellucida (L.) Kunth. Pharmacogn Mag. 2017;13 (Suppl(62):179–88.

33. Aebisher D, Cichonski J, Szpyrka E, Masjonis S, Chrzanowski G. Essential Oils of Seven Lamiaceae Plants and Their Antioxidant Capacity. 2021;1–15.

34. Review AU. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. 2020;

35. Candelaria-Dueñas S, Serrano-Parrales R, Ávila-Romero M, Meraz-Martínez S, Orozco-Martínez J, Ávila-Acevedo JG, et al. Evaluation of the antimicrobial activity of some components of the essential oils of plants used in the traditional medicine of the tehuacán-cuicatlán valley, puebla, méxico. Antibiotics. 2021;10(3):1–15.

36. Hudson A, Lopez E, Almalki AJ, Roe AL, Calderón AI. A Review of the Toxicity of Compounds Found in Herbal Dietary Supplements. Planta Med. 2018;84(9–10):613–26.

37. Silva Teles MMR, Vieira Pinheiro AA, Da Silva Dias C, Fechine Tavares J, Barbosa Filho JM, Leitão Da Cunha EV. Alkaloids of the Lauraceae. Alkaloids Chem Biol. 2019;82:147–304.

38. Souza-Junior FJC, Luz-Moraes D, Pereira FS, Barros MA, Fernandes LMP, Queiroz LY, et al. Aniba canelilla (Kunth) Mez (Lauraceae): A Review of Ethnobotany, Phytochemical, Antioxidant, Anti-Inflammatory, Cardiovascular, and Neurological Properties. Front Pharmacol. 2020;11(May):1–14.

39. Teles AM, Matheus J, Fernandes P, Abreu-silva AL, Marinho SC, Mouchrek AN, et al. Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics. 2021;10(24):1–16.

40. Saia TFF, Meneghin SP, Sebastiani R. Some aspects of germination in banisteriopsis variabilis b.Gates (malpighiaceae). Brazilian J Biol. 2021;81(1):210–2.

41. Guilhon-Simplicio F, De Meneses Pereira M. Aspectos químicos e farmacológicos de Byrsonima (Malpighiaceae). Quim Nova. 2011;34(6):1032–41.

42. De Souza VR, Brum MCM, Guimarães IDS, De Freitas Dos Santos P, Do Amaral TO, Abreu JP, et al. Amazon fruits inhibit growth and promote pro-apoptotic effects on human ovarian carcinoma cell lines. Biomolecules. 2019;9(11).

43. Ramos AS, Mar JM, da Silva LS, Acho LDR, Silva BJP, Lima ES, et al. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food Res Int [Internet]. 2019;123(January):674–83. Available from: https://doi.org/10.1016/j.foodres.2019.05.042

44. Torres SL, Arruda MSP, Arruda AC, Müller AH, Silva SC. Flavonoids from Brosimum acutifolium. Phytochemistry. 2000;53(8):1047–50.

45. Gomes P, Quirós-Guerrero L, Muribeca A, Reis J, Pamplona S, Lima AH, et al. Constituents of chamaecrista diphylla (L.) greene leaves with potent antioxidant capacity: A feature-based molecular network dereplication approach. Pharmaceutics. 2021;13(5).

46. Kładna A, Berczyński P, Piechowska T, Kruk I, Aboul-Enein HY, Ceylan-Unlusoy M, et al. Studies on the antioxidant activities of some new chromone compounds. Luminescence. 2014;29(7):846–53.

47. Tamokou J de D, Simo Mpetga DJ, Keilah Lunga P, Tene M, Tane P, Kuiate JR. Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoideae). BMC Complement Altern Med. 2012;12(1):1.

48. Ghanimi R, Ouhammou A, El Atki Y, El Hassan Bouchari M, Cherkaoui M. The Antioxidant Activities of Ethanolic, Methanolic, Ethyl Acetate, and Aqueous Extracts of the Endemic Species, Lavandula mairei Humbert (A Comparative Study between Cold and Hot Extraction). Ethiop J Health Sci. 2022;32(6):1231–6.

49. Kandsi F, Conte R, Marghich M, Lafdil FZ, Alajmi MF, Bouhrim M, et al. Phytochemical analysis, antispasmodic, myorelaxant, and antioxidant effect of dysphania ambrosioides (L.) mosyakin and clemants flower hydroethanolic extracts and its chloroform and ethyl acetate fractions. Molecules. 2021;26(23):1–14.

50. Godinho J, de Sa-Nakanishi AB, Moreira LS, de Oliveira RMW, Huzita CH, Mello JCP, et al. Ethyl-acetate fraction of Trichilia catigua protects against oxidative stress and neuroinflammation after cerebral ischemia/reperfusion. J Ethnopharmacol. 2018;221:109–18.

51. Soares KP, Longhi SJ, Neto LW, De Assis LC. Palms (Arecaceae) from Rio Grande do Sul, Brazil | Palmeiras (Arecaceae) no Rio Grande do Sul, Brasil. Rodriguesia. 2014;65(1):113–39.

52. Rezaire A, Robinson JC, Bereau D, Verbaere A, Sommerer N, Khan MK, et al. Amazonian palm Oenocarpus bataua (“patawa”): Chemical and biological antioxidant activity - Phytochemical composition. Food Chem [Internet]. 2014;149:62–70. Available from: http://dx.doi.org/10.1016/j.foodchem.2013.10.077

53. Abadio Finco FDB, Kammerer DR, Carle R, Tseng WH, Böser S, Graeve L. Antioxidant activity and characterization of phenolic compounds from bacaba (Oenocarpus bacaba Mart.) Fruit by HPLC-DAD-MSn. J Agric Food Chem. 2012;60(31):7665–73.

54. Carvalho AV, Ferreira Ferreira da Silveira T, Mattietto R de A, Padilha de Oliveira M do S, Godoy HT. Chemical composition and antioxidant capacity of açaí (Euterpe oleracea) genotypes and commercial pulps. J Sci Food Agric. 2017;97(5):1467–74.

55. Turola Barbi RC, Silveira Hornung P, Ávila S, da Silva Bambirra Alves FE, Beta T, Hoffmann Ribani R. Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food Chem [Internet]. 2020;331:127333. Available from: https://doi.org/10.1016/j.foodchem.2020.127333

56. Turola Barbi RC. CARACTERIZAÇÃO DOS FRUTOS MADUROS E IMATUROS DE INAJÁ (Maximiliana Maripa): UMA NOVA FONTE DE COMPOSTOS BIOATIVOS DE ALTO VALOR AGREGADO. Paraná. Tese [Doutorado em Engenharia de Alimentos] - Universidade Federal do Paraná; 2019;

57. de Paulo Farias D, Neri-Numa IA, de Araújo FF, Pastore GM. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem [Internet]. 2020;306(October 2019):125630. Available from: https://doi.org/10.1016/j.foodchem.2019.125630

58. Garzón GA, Narváez-Cuenca CE, Kopec RE, Barry AM, Riedl KM, Schwartz SJ. Determination of carotenoids, total phenolic content, and antioxidant activity of Arazá (Eugenia stipitata McVaugh), an amazonian fruit. J Agric Food Chem. 2012;60(18):4709–17.

59. Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, et al. Guava ( Psidium guajava L .) Leaves : Nutritional Composition. Foods. 2021;10(752):1–20.

60. Veeramani C, El Newehy AS, Alsaif MA, Al-Numair KS. Vitamin A-and C-rich Pouteria camito fru it derived superparamagnetic nanoparticles Synthesis, characterization, and their cytotoxicity. Afr Health Sci. 2022;22(1):673–80.

61. Fabris LC, Peixoto AL. Sapotaceae das Restingas do Espírito Santo, Brasil. Rodriguesia. 2013;64(2):263–83.

62. Li X, Zhao Y, Tu X, Li C, Zhu Y, Zhong H, et al. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers. Plant Divers [Internet]. 2021;43(4):281–91. Available from: https://doi.org/10.1016/j.pld.2021.04.004

63. Rosan Fortunato Seixas F, Kempfer Bassoli B, Borghi Virgolin L, Chancare Garcia L, Soares Janzantti N. Physicochemical properties and effects of fruit pulps from the amazon biome on physiological parameters in rats. Nutrients. 2021;13(5):1–11.

64. Che Hassan NKN, Taher M, Susanti D. Phytochemical constituents and pharmacological properties of Garcinia xanthochymus- a review. Biomed Pharmacother [Internet]. 2018;106(April):1378–89. Available from: https://doi.org/10.1016/j.biopha.2018.07.087

65. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021;22(7).

66. de Souza VR, Aniceto A, Abreu JP, Montenegro J, Boquimpani B, de Jesuz VA, et al. Fruit-based drink sensory, physicochemical, and antioxidant properties in the Amazon region: Murici (Byrsonima crassifolia (L.) Kunth and verbascifolia (L.) DC) and tapereba (Spondia mombin). Food Sci Nutr. 2020;8(5):2341–7.

67. de Moraes ÂAB, de Jesus Pereira Franco C, Ferreira OO, Varela ELP, do Nascimento LD, Cascaes MM, et al. Myrcia paivae O.Berg (Myrtaceae) Essential Oil, First Study of the Chemical Composition and Antioxidant Potential. Molecules. 2022;27(17):1–10.

68. Cascaes MM, De Moraes ÂAB, Cruz JN, Franco C de JP, E Silva RC, Nascimento LD do, et al. Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants. 2022;11(9).

69. Cooper D, Doucet L, Pratt M. Guayusa (Ilex guayusa L.) new tea: phenolic and carotenoid composition and antioxidant capacity. J Organ Behav. 2007;28(3):303–25.

70. Alam N, Bristi NJ. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143–52.

Downloads

Publicado

2025-04-11

Como Citar

Paes , A. S., Rocha, K. D., da Silva, F. T., Almeida, H. K. S., Teixeira, L. P. C., & Castilho-Martins, E. A. (2025). Potencial antioxidante de plantas da Amazônia: Uma revisão integrativa. Revista Contexto & Saúde, 25(50), e15659. https://doi.org/10.21527/2176-7114.2025.50.15659

Edição

Seção

Artigo de Revisão