Bromatological analysis and evaluation of antioxidant properties of pasteurized cupuaçu (Theobroma grandiflorum) juice fermented by Lacticaseibacillus rhamnosus ATCC 9595

Authors

DOI:

https://doi.org/10.21527/2176-7114.2024.48.15050

Keywords:

Fermentation, Fruit Juice, Probiotics, Functional Food, Free Radicals

Abstract

This study conducted a bromatological analysis and evaluated the antioxidant properties of pasteurized cupuaçu (Theobroma grandiflorum) juice fermented by Lacticaseibacillus rhamnosus ATCC 9595. The juices were pasteurized (80 °C/10 minutes) for subsequent fermentation with L. rhamnosus ATCC 9595 (inoculum of 108 CFU/mL). After 48 hours, the viability of L. rhamnosus, production of organic acids, and resistance to lysozyme and bile salts were analyzed. The samples were refrigerated for 28 days for bromatological analyses. The juices were extracted with ethyl acetate to evaluate antioxidant activity, phenolic compounds, and flavonoids. L. rhamnosus ATCC 9595 grew in pasteurized cupuaçu juice (~9 Log CFU/mL) and remained stable over 28 days (p > 0.05). All samples met the microbiological standards established by Brazilian guidelines for juices. Similarly, no significant changes were detected in the levels of ashes, moisture, or Brix degrees during the analyzed periods (p > 0.05). L. rhamnosus ATCC 9595 cultivated in the juice or MRS medium resisted the action of lysozyme (100 mg/L) and bile salts (0.5% and 1.0%). The antioxidant capacity of cupuaçu juice significantly increased after fermentation by L. rhamnosus ATCC 9595, as did the levels of phenolic compounds. The fermented juice samples showed similar IC50 values during storage, while the non-fermented extract showed variation from the 21st day onwards. The results indicate that fermentation by L. rhamnosus ATCC 9595 is an efficient strategy to enhance the antioxidant characteristics of cupuaçu juice.

References

Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int J biochem cell boil. 2023;154. DOI:10.1016/J.BIOCEL.2022.106346

Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of Oxidative Stress and Antioxidant Defense. J pharm biomed anal. 2022;209:114477.

Sharifi-Rad M, Anil Kumar N v., Zucca P, Varoni EM, Dini L, Panzarini E et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front physiol, 2020;11:694.

Matzembacher dos Santos J, Gomes Heck T. Oxidative stress in type 2 diabetes and the impact of exercise: from mitochondria to glucose management in skeletal muscle. Revista contexto & saúde. 2022;22:e11425-e11425.

Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature reviews. 2021;20:689.

Giampieri F, Battino M. Bioactive Phytochemicals and Functional Food Ingredients in Fruits and Vegetables. Int J mol sci. 2020;21. DOI: 10.3390/IJMS21093278

Punaro GR, Lima DY, Rodrigues AM, Pugliero S, Mouro MG, Rogero MM et al. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clinical nutrition. 2019;38: 364-371.

Rodrigues DBB, Punaro GR, de LIMA DY, Rodrigues AM, Pugliero S, Higa EMS. Cupuaçu extract protects the kidneys of diabetic rats by modulating Nrf2/NF-κB p65 and iNOS. An acad bras cienc. 2023;95:e20220927.

Zagmignan A, Mendes YC, Mesquita GP, Santos GDC dos, Silva L dos S, de Souza Sales AC et al. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients. 2023;15. DOI: 10.3390/NU15041059

Ribeiro FC, de Barros PP, Rossoni RD, Junqueira JC, Jorge AOC. Lactobacillus rhamnosus inhibits Candida albicans virulence factors in vitro and modulates immune system in Galleria mellonella. J appl microbial. 2017;122:201-211.

Mendi A, Kӧse S, Uçkan D, Akca G, Yilmaz D, Aral L et al. Lactobacillus rhamnosus could inhibit Porphyromonas gingivalis derived CXCL8 attenuation. Journal of applied oral science. 2016;24:67-75.

Mendes YC, Mesquita GP, Costa GDE, Barbosa da Silva AC, Gouveia E, Silva MRC et al. Evaluation of Growth, Viability, Lactic Acid Production and Anti-Infective Effects of Lacticaseibacillus rhamnosus ATCC 9595 in Bacuri Juice (Platonia insignis). Foods. 2021;10:603.

Brasil. Agência Nacional de Vigilância Sanitária, Instrução Normativa N° 60, de 23 de dezembro de 2019. DOU – Imprensa Nacional. 2019. [acesso 17 ago. 2023]. Disponível em: https://www.in.gov.br/web/dou/-/instrucao-normativa-n-60-de-23-de-dezembro-de-2019-235332356)

Zenebon O, Pascuet NS. Métodos físico-químicos para análise de alimentos. 2005;1.018-1.018.

Silva B, Jung LRC, Sandes SHC, Alvim LB, Bomfim MRQ, Nicoli JR et al. In vitro assessment of functional properties of lactic acid bacteria isolated from faecal microbiota of healthy dogs for potential use as probiotics. Benef microbes. 2013.

Silva TF, Cavalcanti Filho JRN, Fonsêca MMLB, Santos NM dos, Silva ACB da, Zagmignan A et al. Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury. Pharmaceuticals. 2020;13:46.

Brasil. Agência Nacional de Vigilância Sanitária. RDC No 241, de 26 de julho de 2018. 2018. [acesso 17 ago. 2023]. Disponível em: http://antigo.anvisa.gov.br/legislacao#/visualizar/378665

Brasil. Agência Nacional de Vigilância Sanitária. Guia para instrução processual de petição de avaliação de probióticos para uso em alimentos. 2021. [acesso 17 ago. 2023]. Disponível em: http://antigo.anvisa.gov.br/guias#/visualizar/448269

Brasil. Agência Nacional de Vigilância Sanitária. Alimentos com alegações de propriedades funcionais e/ou de saúde, novos alimentos/ingredientes, substâncias bioativas e probióticos: IX lista de alegações de propriedade funcional aprovada, atualizado em julho/2008. 2008.

Ruiz Rodríguez LG, Zamora Gasga VM, Pescuma M, Van Nieuwenhove C, Mozzi F, Sánchez Burgos JA. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food research international. 2021;140:109854.

Naseem Z, Mir SA, Wani SM, Rouf MA, Bashir I, Zehra A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition. 2023;115. DOI: 10.1016/J.NUT.2023.112154

Maia MS, Domingos MM, de São José JFB. Viability of Probiotic Microorganisms and the Effect of Their Addition to Fruit and Vegetable Juices. Microorganisms. 2023;11. DOI: 10.3390/MICROORGANISMS11051335

Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods. 2022;11. DOI: 10.3390/FOODS11182760

Schneider E, Doll JPK, Schweinfurth N, Kettelhack C, Schaub AC, Yamanbaeva G et al. Effect of short-term, high-dose probiotic supplementation on cognition, related brain functions and BDNF in patients with depression: a secondary analysis of a randomized controlled trial. J psychiatry neurosci. 2023;48:E23-E33.

Gutiérrez-Castrellón P, Gandara-Martí T, Abreu Y Abreu AT, Nieto-Rufino CD, López-Orduña E, Jiménez-Escobar I et al. Probiotic improves symptomatic and viral clearance in Covid19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial. Gut microbes. 2022;14. DOI: 10.1080/19490976.2021.2018899

Sengun IY, Kirmizigul A, Atlama K, Yilmaz B. The viability of Lactobacillus rhamnosus in orange juice fortified with nettle (Urtica dioica L.) and bioactive properties of the juice during storage. LWT. 2020;118:108707.

Prates FC, de Castro Leite Júnior BR, Martins EMF, Cristianini M, da Silva RR, da Rocha Campos AN et al. Development of a mixed jussara and mango juice with added Lactobacillus rhamnosus GG submitted to sub-lethal acid and baric stresses. J food sci technol. 2020;57:4.524-4.532.

Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: A concise review. J food biochem. 2022;46. DOI: 10.1111/JFBC.14264

Dias MC, Pinto DCGA, Silva AMS, Giovinazzo G, Gerardi C, Mosca L. Plant Flavonoids: ChemicalCharacteristics and Biological Activity. Molecules. 2021;26:5.377.

Published

2024-05-06

How to Cite

Guimarães, D. dos S., da Silva, C. C. ., Aguiar, K. S. A. ., Ferreira, A. F. ., Silva, . M. A. ., da Silva, L. C. N., & Zagmignan, A. (2024). Bromatological analysis and evaluation of antioxidant properties of pasteurized cupuaçu (Theobroma grandiflorum) juice fermented by Lacticaseibacillus rhamnosus ATCC 9595. Context and Health Journal, 24(48), e15050. https://doi.org/10.21527/2176-7114.2024.48.15050

Issue

Section

ORIGINAL ARTICLE